| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > srgcl | Unicode version | ||
| Description: Closure of the multiplication operation of a semiring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| srgcl.b |
|
| srgcl.t |
|
| Ref | Expression |
|---|---|
| srgcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. . . . 5
| |
| 2 | 1 | srgmgp 13845 |
. . . 4
|
| 3 | 2 | 3ad2ant1 1021 |
. . 3
|
| 4 | simp2 1001 |
. . . 4
| |
| 5 | srgcl.b |
. . . . . 6
| |
| 6 | 1, 5 | mgpbasg 13803 |
. . . . 5
|
| 7 | 6 | 3ad2ant1 1021 |
. . . 4
|
| 8 | 4, 7 | eleqtrd 2286 |
. . 3
|
| 9 | simp3 1002 |
. . . 4
| |
| 10 | 9, 7 | eleqtrd 2286 |
. . 3
|
| 11 | eqid 2207 |
. . . 4
| |
| 12 | eqid 2207 |
. . . 4
| |
| 13 | 11, 12 | mndcl 13370 |
. . 3
|
| 14 | 3, 8, 10, 13 | syl3anc 1250 |
. 2
|
| 15 | srgcl.t |
. . . . 5
| |
| 16 | 1, 15 | mgpplusgg 13801 |
. . . 4
|
| 17 | 16 | 3ad2ant1 1021 |
. . 3
|
| 18 | 17 | oveqd 5984 |
. 2
|
| 19 | 14, 18, 7 | 3eltr4d 2291 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-plusg 13037 df-mulr 13038 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-mgp 13798 df-srg 13841 |
| This theorem is referenced by: srgfcl 13850 srgmulgass 13866 srgpcomppsc 13869 srglmhm 13870 srgrmhm 13871 reldvdsrsrg 13969 dvdsrvald 13970 dvdsrd 13971 dvdsrex 13975 |
| Copyright terms: Public domain | W3C validator |