ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgcl Unicode version

Theorem srgcl 13928
Description: Closure of the multiplication operation of a semiring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgcl.b  |-  B  =  ( Base `  R
)
srgcl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
srgcl  |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  e.  B )

Proof of Theorem srgcl
StepHypRef Expression
1 eqid 2229 . . . . 5  |-  (mulGrp `  R )  =  (mulGrp `  R )
21srgmgp 13926 . . . 4  |-  ( R  e. SRing  ->  (mulGrp `  R )  e.  Mnd )
323ad2ant1 1042 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B )  ->  (mulGrp `  R )  e.  Mnd )
4 simp2 1022 . . . 4  |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
5 srgcl.b . . . . . 6  |-  B  =  ( Base `  R
)
61, 5mgpbasg 13884 . . . . 5  |-  ( R  e. SRing  ->  B  =  (
Base `  (mulGrp `  R
) ) )
763ad2ant1 1042 . . . 4  |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B )  ->  B  =  ( Base `  (mulGrp `  R ) ) )
84, 7eleqtrd 2308 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  ( Base `  (mulGrp `  R ) ) )
9 simp3 1023 . . . 4  |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
109, 7eleqtrd 2308 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  ( Base `  (mulGrp `  R ) ) )
11 eqid 2229 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
12 eqid 2229 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
1311, 12mndcl 13451 . . 3  |-  ( ( (mulGrp `  R )  e.  Mnd  /\  X  e.  ( Base `  (mulGrp `  R ) )  /\  Y  e.  ( Base `  (mulGrp `  R )
) )  ->  ( X ( +g  `  (mulGrp `  R ) ) Y )  e.  ( Base `  (mulGrp `  R )
) )
143, 8, 10, 13syl3anc 1271 . 2  |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( +g  `  (mulGrp `  R ) ) Y )  e.  ( Base `  (mulGrp `  R )
) )
15 srgcl.t . . . . 5  |-  .x.  =  ( .r `  R )
161, 15mgpplusgg 13882 . . . 4  |-  ( R  e. SRing  ->  .x.  =  ( +g  `  (mulGrp `  R
) ) )
17163ad2ant1 1042 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B )  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
1817oveqd 6017 . 2  |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  =  ( X ( +g  `  (mulGrp `  R )
) Y ) )
1914, 18, 73eltr4d 2313 1  |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   .rcmulr 13106   Mndcmnd 13444  mulGrpcmgp 13878  SRingcsrg 13921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mgp 13879  df-srg 13922
This theorem is referenced by:  srgfcl  13931  srgmulgass  13947  srgpcomppsc  13950  srglmhm  13951  srgrmhm  13952  reldvdsrsrg  14050  dvdsrvald  14051  dvdsrd  14052  dvdsrex  14056
  Copyright terms: Public domain W3C validator