ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrvald Unicode version

Theorem dvrvald 13690
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
dvrvald.b  |-  ( ph  ->  B  =  ( Base `  R ) )
dvrvald.t  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
dvrvald.u  |-  ( ph  ->  U  =  (Unit `  R ) )
dvrvald.i  |-  ( ph  ->  I  =  ( invr `  R ) )
dvrvald.d  |-  ( ph  -> 
./  =  (/r `  R
) )
dvrvald.r  |-  ( ph  ->  R  e.  Ring )
dvrvald.x  |-  ( ph  ->  X  e.  B )
dvrvald.y  |-  ( ph  ->  Y  e.  U )
Assertion
Ref Expression
dvrvald  |-  ( ph  ->  ( X  ./  Y
)  =  ( X 
.x.  ( I `  Y ) ) )

Proof of Theorem dvrvald
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvrvald.b . . 3  |-  ( ph  ->  B  =  ( Base `  R ) )
2 dvrvald.t . . 3  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
3 dvrvald.u . . 3  |-  ( ph  ->  U  =  (Unit `  R ) )
4 dvrvald.i . . 3  |-  ( ph  ->  I  =  ( invr `  R ) )
5 dvrvald.d . . 3  |-  ( ph  -> 
./  =  (/r `  R
) )
6 dvrvald.r . . . 4  |-  ( ph  ->  R  e.  Ring )
7 ringsrg 13603 . . . 4  |-  ( R  e.  Ring  ->  R  e. SRing
)
86, 7syl 14 . . 3  |-  ( ph  ->  R  e. SRing )
91, 2, 3, 4, 5, 8dvrfvald 13689 . 2  |-  ( ph  -> 
./  =  ( x  e.  B ,  y  e.  U  |->  ( x 
.x.  ( I `  y ) ) ) )
10 simpl 109 . . . 4  |-  ( ( x  =  X  /\  y  =  Y )  ->  x  =  X )
11 fveq2 5558 . . . . 5  |-  ( y  =  Y  ->  (
I `  y )  =  ( I `  Y ) )
1211adantl 277 . . . 4  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( I `  y
)  =  ( I `
 Y ) )
1310, 12oveq12d 5940 . . 3  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( x  .x.  (
I `  y )
)  =  ( X 
.x.  ( I `  Y ) ) )
1413adantl 277 . 2  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( x  .x.  (
I `  y )
)  =  ( X 
.x.  ( I `  Y ) ) )
15 dvrvald.x . 2  |-  ( ph  ->  X  e.  B )
16 dvrvald.y . 2  |-  ( ph  ->  Y  e.  U )
172oveqd 5939 . . 3  |-  ( ph  ->  ( X  .x.  (
I `  Y )
)  =  ( X ( .r `  R
) ( I `  Y ) ) )
1815, 1eleqtrd 2275 . . . 4  |-  ( ph  ->  X  e.  ( Base `  R ) )
19 eqidd 2197 . . . . 5  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  R ) )
2016, 3eleqtrd 2275 . . . . . . 7  |-  ( ph  ->  Y  e.  (Unit `  R ) )
21 eqid 2196 . . . . . . . 8  |-  (Unit `  R )  =  (Unit `  R )
22 eqid 2196 . . . . . . . 8  |-  ( invr `  R )  =  (
invr `  R )
2321, 22unitinvcl 13679 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  (Unit `  R )
)  ->  ( ( invr `  R ) `  Y )  e.  (Unit `  R ) )
246, 20, 23syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( invr `  R
) `  Y )  e.  (Unit `  R )
)
254fveq1d 5560 . . . . . 6  |-  ( ph  ->  ( I `  Y
)  =  ( (
invr `  R ) `  Y ) )
2624, 25, 33eltr4d 2280 . . . . 5  |-  ( ph  ->  ( I `  Y
)  e.  U )
2719, 3, 8, 26unitcld 13664 . . . 4  |-  ( ph  ->  ( I `  Y
)  e.  ( Base `  R ) )
28 eqid 2196 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
29 eqid 2196 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
3028, 29ringcl 13569 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  R
)  /\  ( I `  Y )  e.  (
Base `  R )
)  ->  ( X
( .r `  R
) ( I `  Y ) )  e.  ( Base `  R
) )
316, 18, 27, 30syl3anc 1249 . . 3  |-  ( ph  ->  ( X ( .r
`  R ) ( I `  Y ) )  e.  ( Base `  R ) )
3217, 31eqeltrd 2273 . 2  |-  ( ph  ->  ( X  .x.  (
I `  Y )
)  e.  ( Base `  R ) )
339, 14, 15, 16, 32ovmpod 6050 1  |-  ( ph  ->  ( X  ./  Y
)  =  ( X 
.x.  ( I `  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   ` cfv 5258  (class class class)co 5922   Basecbs 12678   .rcmulr 12756  SRingcsrg 13519   Ringcrg 13552  Unitcui 13643   invrcinvr 13676  /rcdvr 13687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-cmn 13416  df-abl 13417  df-mgp 13477  df-ur 13516  df-srg 13520  df-ring 13554  df-oppr 13624  df-dvdsr 13645  df-unit 13646  df-invr 13677  df-dvr 13688
This theorem is referenced by:  dvrcl  13691  unitdvcl  13692  dvrid  13693  dvr1  13694  dvrass  13695  dvrcan1  13696  dvrdir  13699  rdivmuldivd  13700  ringinvdv  13701  subrgdv  13794
  Copyright terms: Public domain W3C validator