ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgunit Unicode version

Theorem subrgunit 14076
Description: An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1  |-  S  =  ( Rs  A )
subrgugrp.2  |-  U  =  (Unit `  R )
subrgugrp.3  |-  V  =  (Unit `  S )
subrgunit.4  |-  I  =  ( invr `  R
)
Assertion
Ref Expression
subrgunit  |-  ( A  e.  (SubRing `  R
)  ->  ( X  e.  V  <->  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) ) )

Proof of Theorem subrgunit
StepHypRef Expression
1 subrgugrp.1 . . . . 5  |-  S  =  ( Rs  A )
2 subrgugrp.2 . . . . 5  |-  U  =  (Unit `  R )
3 subrgugrp.3 . . . . 5  |-  V  =  (Unit `  S )
41, 2, 3subrguss 14073 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  U
)
54sselda 3197 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  X  e.  U )
61subrgbas 14067 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
76adantr 276 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  A  =  ( Base `  S
) )
83a1i 9 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  V  =  (Unit `  S )
)
91subrgring 14061 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
10 ringsrg 13884 . . . . . 6  |-  ( S  e.  Ring  ->  S  e. SRing
)
119, 10syl 14 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  S  e. SRing )
1211adantr 276 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  S  e. SRing )
13 simpr 110 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  X  e.  V )
147, 8, 12, 13unitcld 13945 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  X  e.  A )
15 eqid 2206 . . . . . 6  |-  ( invr `  S )  =  (
invr `  S )
16 eqid 2206 . . . . . 6  |-  ( Base `  S )  =  (
Base `  S )
173, 15, 16ringinvcl 13962 . . . . 5  |-  ( ( S  e.  Ring  /\  X  e.  V )  ->  (
( invr `  S ) `  X )  e.  (
Base `  S )
)
189, 17sylan 283 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  (
( invr `  S ) `  X )  e.  (
Base `  S )
)
19 subrgunit.4 . . . . 5  |-  I  =  ( invr `  R
)
201, 19, 3, 15subrginv 14074 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  (
I `  X )  =  ( ( invr `  S ) `  X
) )
2118, 20, 73eltr4d 2290 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  (
I `  X )  e.  A )
225, 14, 213jca 1180 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  ( X  e.  U  /\  X  e.  A  /\  ( I `  X
)  e.  A ) )
23 eqidd 2207 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( Base `  S )  =  ( Base `  S
) )
24 eqidd 2207 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ||r `
 S )  =  ( ||r `
 S ) )
2511adantr 276 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  S  e. SRing )
26 eqidd 2207 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( .r `  S
)  =  ( .r
`  S ) )
27 simpr2 1007 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X  e.  A )
286adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  A  =  ( Base `  S ) )
2927, 28eleqtrd 2285 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X  e.  ( Base `  S ) )
30 simpr3 1008 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( I `  X
)  e.  A )
3130, 28eleqtrd 2285 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( I `  X
)  e.  ( Base `  S ) )
3223, 24, 25, 26, 29, 31dvdsrmuld 13933 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X ( ||r `
 S ) ( ( I `  X
) ( .r `  S ) X ) )
33 subrgrcl 14063 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
34 simpr1 1006 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X  e.  U )
35 eqid 2206 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
36 eqid 2206 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
372, 19, 35, 36unitlinv 13963 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( I `  X
) ( .r `  R ) X )  =  ( 1r `  R ) )
3833, 34, 37syl2an2r 595 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  R ) X )  =  ( 1r
`  R ) )
391, 35ressmulrg 13052 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
4033, 39mpdan 421 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
4140adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( .r `  R
)  =  ( .r
`  S ) )
4241oveqd 5974 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  R ) X )  =  ( ( I `  X ) ( .r `  S
) X ) )
431, 36subrg1 14068 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  S ) )
4443adantr 276 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( 1r `  R
)  =  ( 1r
`  S ) )
4538, 42, 443eqtr3d 2247 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  S ) X )  =  ( 1r
`  S ) )
4632, 45breqtrd 4077 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X ( ||r `
 S ) ( 1r `  S ) )
479adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  S  e.  Ring )
48 eqid 2206 . . . . . . 7  |-  (oppr `  S
)  =  (oppr `  S
)
4948, 16opprbasg 13912 . . . . . 6  |-  ( S  e.  Ring  ->  ( Base `  S )  =  (
Base `  (oppr
`  S ) ) )
5047, 49syl 14 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( Base `  S )  =  ( Base `  (oppr `  S
) ) )
51 eqidd 2207 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ||r `
 (oppr
`  S ) )  =  ( ||r `
 (oppr
`  S ) ) )
5248opprring 13916 . . . . . 6  |-  ( S  e.  Ring  ->  (oppr `  S
)  e.  Ring )
53 ringsrg 13884 . . . . . 6  |-  ( (oppr `  S )  e.  Ring  -> 
(oppr `  S )  e. SRing )
5447, 52, 533syl 17 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
(oppr `  S )  e. SRing )
55 eqidd 2207 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( .r `  (oppr `  S
) )  =  ( .r `  (oppr `  S
) ) )
5650, 51, 54, 55, 29, 31dvdsrmuld 13933 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X ( ||r `
 (oppr
`  S ) ) ( ( I `  X ) ( .r
`  (oppr
`  S ) ) X ) )
57 eqid 2206 . . . . . . 7  |-  ( .r
`  S )  =  ( .r `  S
)
58 eqid 2206 . . . . . . 7  |-  ( .r
`  (oppr
`  S ) )  =  ( .r `  (oppr `  S ) )
5916, 57, 48, 58opprmulg 13908 . . . . . 6  |-  ( ( S  e.  Ring  /\  (
I `  X )  e.  ( Base `  S
)  /\  X  e.  ( Base `  S )
)  ->  ( (
I `  X )
( .r `  (oppr `  S
) ) X )  =  ( X ( .r `  S ) ( I `  X
) ) )
6047, 31, 29, 59syl3anc 1250 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  (oppr
`  S ) ) X )  =  ( X ( .r `  S ) ( I `
 X ) ) )
612, 19, 35, 36unitrinv 13964 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X ( .r `  R ) ( I `
 X ) )  =  ( 1r `  R ) )
6233, 34, 61syl2an2r 595 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( X ( .r
`  R ) ( I `  X ) )  =  ( 1r
`  R ) )
6341oveqd 5974 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( X ( .r
`  R ) ( I `  X ) )  =  ( X ( .r `  S
) ( I `  X ) ) )
6462, 63, 443eqtr3d 2247 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( X ( .r
`  S ) ( I `  X ) )  =  ( 1r
`  S ) )
6560, 64eqtrd 2239 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  (oppr
`  S ) ) X )  =  ( 1r `  S ) )
6656, 65breqtrd 4077 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) )
673a1i 9 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  V  =  (Unit `  S ) )
68 eqidd 2207 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  S )  =  ( 1r `  S ) )
69 eqidd 2207 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  S
)  =  ( ||r `  S
) )
70 eqidd 2207 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  (oppr
`  S )  =  (oppr
`  S ) )
71 eqidd 2207 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) ) )
7267, 68, 69, 70, 71, 11isunitd 13943 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( X  e.  V  <->  ( X (
||r `  S ) ( 1r
`  S )  /\  X ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) ) ) )
7372adantr 276 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( X  e.  V  <->  ( X ( ||r `
 S ) ( 1r `  S )  /\  X ( ||r `  (oppr `  S
) ) ( 1r
`  S ) ) ) )
7446, 66, 73mpbir2and 947 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X  e.  V )
7522, 74impbida 596 1  |-  ( A  e.  (SubRing `  R
)  ->  ( X  e.  V  <->  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   class class class wbr 4051   ` cfv 5280  (class class class)co 5957   Basecbs 12907   ↾s cress 12908   .rcmulr 12985   1rcur 13796  SRingcsrg 13800   Ringcrg 13833  opprcoppr 13904   ||rcdsr 13923  Unitcui 13924   invrcinvr 13957  SubRingcsubrg 14054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-tpos 6344  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-3 9116  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-iress 12915  df-plusg 12997  df-mulr 12998  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411  df-subg 13581  df-cmn 13697  df-abl 13698  df-mgp 13758  df-ur 13797  df-srg 13801  df-ring 13835  df-oppr 13905  df-dvdsr 13926  df-unit 13927  df-invr 13958  df-subrg 14056
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator