ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgunit Unicode version

Theorem subrgunit 13919
Description: An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1  |-  S  =  ( Rs  A )
subrgugrp.2  |-  U  =  (Unit `  R )
subrgugrp.3  |-  V  =  (Unit `  S )
subrgunit.4  |-  I  =  ( invr `  R
)
Assertion
Ref Expression
subrgunit  |-  ( A  e.  (SubRing `  R
)  ->  ( X  e.  V  <->  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) ) )

Proof of Theorem subrgunit
StepHypRef Expression
1 subrgugrp.1 . . . . 5  |-  S  =  ( Rs  A )
2 subrgugrp.2 . . . . 5  |-  U  =  (Unit `  R )
3 subrgugrp.3 . . . . 5  |-  V  =  (Unit `  S )
41, 2, 3subrguss 13916 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  U
)
54sselda 3192 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  X  e.  U )
61subrgbas 13910 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
76adantr 276 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  A  =  ( Base `  S
) )
83a1i 9 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  V  =  (Unit `  S )
)
91subrgring 13904 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
10 ringsrg 13727 . . . . . 6  |-  ( S  e.  Ring  ->  S  e. SRing
)
119, 10syl 14 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  S  e. SRing )
1211adantr 276 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  S  e. SRing )
13 simpr 110 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  X  e.  V )
147, 8, 12, 13unitcld 13788 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  X  e.  A )
15 eqid 2204 . . . . . 6  |-  ( invr `  S )  =  (
invr `  S )
16 eqid 2204 . . . . . 6  |-  ( Base `  S )  =  (
Base `  S )
173, 15, 16ringinvcl 13805 . . . . 5  |-  ( ( S  e.  Ring  /\  X  e.  V )  ->  (
( invr `  S ) `  X )  e.  (
Base `  S )
)
189, 17sylan 283 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  (
( invr `  S ) `  X )  e.  (
Base `  S )
)
19 subrgunit.4 . . . . 5  |-  I  =  ( invr `  R
)
201, 19, 3, 15subrginv 13917 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  (
I `  X )  =  ( ( invr `  S ) `  X
) )
2118, 20, 73eltr4d 2288 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  (
I `  X )  e.  A )
225, 14, 213jca 1179 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  ( X  e.  U  /\  X  e.  A  /\  ( I `  X
)  e.  A ) )
23 eqidd 2205 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( Base `  S )  =  ( Base `  S
) )
24 eqidd 2205 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ||r `
 S )  =  ( ||r `
 S ) )
2511adantr 276 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  S  e. SRing )
26 eqidd 2205 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( .r `  S
)  =  ( .r
`  S ) )
27 simpr2 1006 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X  e.  A )
286adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  A  =  ( Base `  S ) )
2927, 28eleqtrd 2283 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X  e.  ( Base `  S ) )
30 simpr3 1007 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( I `  X
)  e.  A )
3130, 28eleqtrd 2283 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( I `  X
)  e.  ( Base `  S ) )
3223, 24, 25, 26, 29, 31dvdsrmuld 13776 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X ( ||r `
 S ) ( ( I `  X
) ( .r `  S ) X ) )
33 subrgrcl 13906 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
34 simpr1 1005 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X  e.  U )
35 eqid 2204 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
36 eqid 2204 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
372, 19, 35, 36unitlinv 13806 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( I `  X
) ( .r `  R ) X )  =  ( 1r `  R ) )
3833, 34, 37syl2an2r 595 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  R ) X )  =  ( 1r
`  R ) )
391, 35ressmulrg 12895 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
4033, 39mpdan 421 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
4140adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( .r `  R
)  =  ( .r
`  S ) )
4241oveqd 5951 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  R ) X )  =  ( ( I `  X ) ( .r `  S
) X ) )
431, 36subrg1 13911 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  S ) )
4443adantr 276 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( 1r `  R
)  =  ( 1r
`  S ) )
4538, 42, 443eqtr3d 2245 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  S ) X )  =  ( 1r
`  S ) )
4632, 45breqtrd 4069 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X ( ||r `
 S ) ( 1r `  S ) )
479adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  S  e.  Ring )
48 eqid 2204 . . . . . . 7  |-  (oppr `  S
)  =  (oppr `  S
)
4948, 16opprbasg 13755 . . . . . 6  |-  ( S  e.  Ring  ->  ( Base `  S )  =  (
Base `  (oppr
`  S ) ) )
5047, 49syl 14 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( Base `  S )  =  ( Base `  (oppr `  S
) ) )
51 eqidd 2205 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ||r `
 (oppr
`  S ) )  =  ( ||r `
 (oppr
`  S ) ) )
5248opprring 13759 . . . . . 6  |-  ( S  e.  Ring  ->  (oppr `  S
)  e.  Ring )
53 ringsrg 13727 . . . . . 6  |-  ( (oppr `  S )  e.  Ring  -> 
(oppr `  S )  e. SRing )
5447, 52, 533syl 17 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
(oppr `  S )  e. SRing )
55 eqidd 2205 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( .r `  (oppr `  S
) )  =  ( .r `  (oppr `  S
) ) )
5650, 51, 54, 55, 29, 31dvdsrmuld 13776 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X ( ||r `
 (oppr
`  S ) ) ( ( I `  X ) ( .r
`  (oppr
`  S ) ) X ) )
57 eqid 2204 . . . . . . 7  |-  ( .r
`  S )  =  ( .r `  S
)
58 eqid 2204 . . . . . . 7  |-  ( .r
`  (oppr
`  S ) )  =  ( .r `  (oppr `  S ) )
5916, 57, 48, 58opprmulg 13751 . . . . . 6  |-  ( ( S  e.  Ring  /\  (
I `  X )  e.  ( Base `  S
)  /\  X  e.  ( Base `  S )
)  ->  ( (
I `  X )
( .r `  (oppr `  S
) ) X )  =  ( X ( .r `  S ) ( I `  X
) ) )
6047, 31, 29, 59syl3anc 1249 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  (oppr
`  S ) ) X )  =  ( X ( .r `  S ) ( I `
 X ) ) )
612, 19, 35, 36unitrinv 13807 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X ( .r `  R ) ( I `
 X ) )  =  ( 1r `  R ) )
6233, 34, 61syl2an2r 595 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( X ( .r
`  R ) ( I `  X ) )  =  ( 1r
`  R ) )
6341oveqd 5951 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( X ( .r
`  R ) ( I `  X ) )  =  ( X ( .r `  S
) ( I `  X ) ) )
6462, 63, 443eqtr3d 2245 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( X ( .r
`  S ) ( I `  X ) )  =  ( 1r
`  S ) )
6560, 64eqtrd 2237 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  (oppr
`  S ) ) X )  =  ( 1r `  S ) )
6656, 65breqtrd 4069 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) )
673a1i 9 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  V  =  (Unit `  S ) )
68 eqidd 2205 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  S )  =  ( 1r `  S ) )
69 eqidd 2205 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  S
)  =  ( ||r `  S
) )
70 eqidd 2205 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  (oppr
`  S )  =  (oppr
`  S ) )
71 eqidd 2205 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) ) )
7267, 68, 69, 70, 71, 11isunitd 13786 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( X  e.  V  <->  ( X (
||r `  S ) ( 1r
`  S )  /\  X ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) ) ) )
7372adantr 276 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( X  e.  V  <->  ( X ( ||r `
 S ) ( 1r `  S )  /\  X ( ||r `  (oppr `  S
) ) ( 1r
`  S ) ) ) )
7446, 66, 73mpbir2and 946 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X  e.  V )
7522, 74impbida 596 1  |-  ( A  e.  (SubRing `  R
)  ->  ( X  e.  V  <->  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   class class class wbr 4043   ` cfv 5268  (class class class)co 5934   Basecbs 12751   ↾s cress 12752   .rcmulr 12829   1rcur 13639  SRingcsrg 13643   Ringcrg 13676  opprcoppr 13747   ||rcdsr 13766  Unitcui 13767   invrcinvr 13800  SubRingcsubrg 13897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-tpos 6321  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-inn 9019  df-2 9077  df-3 9078  df-ndx 12754  df-slot 12755  df-base 12757  df-sets 12758  df-iress 12759  df-plusg 12841  df-mulr 12842  df-0g 13008  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-grp 13253  df-minusg 13254  df-subg 13424  df-cmn 13540  df-abl 13541  df-mgp 13601  df-ur 13640  df-srg 13644  df-ring 13678  df-oppr 13748  df-dvdsr 13769  df-unit 13770  df-invr 13801  df-subrg 13899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator