ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgunit Unicode version

Theorem subrgunit 13871
Description: An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1  |-  S  =  ( Rs  A )
subrgugrp.2  |-  U  =  (Unit `  R )
subrgugrp.3  |-  V  =  (Unit `  S )
subrgunit.4  |-  I  =  ( invr `  R
)
Assertion
Ref Expression
subrgunit  |-  ( A  e.  (SubRing `  R
)  ->  ( X  e.  V  <->  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) ) )

Proof of Theorem subrgunit
StepHypRef Expression
1 subrgugrp.1 . . . . 5  |-  S  =  ( Rs  A )
2 subrgugrp.2 . . . . 5  |-  U  =  (Unit `  R )
3 subrgugrp.3 . . . . 5  |-  V  =  (Unit `  S )
41, 2, 3subrguss 13868 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  U
)
54sselda 3184 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  X  e.  U )
61subrgbas 13862 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
76adantr 276 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  A  =  ( Base `  S
) )
83a1i 9 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  V  =  (Unit `  S )
)
91subrgring 13856 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
10 ringsrg 13679 . . . . . 6  |-  ( S  e.  Ring  ->  S  e. SRing
)
119, 10syl 14 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  S  e. SRing )
1211adantr 276 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  S  e. SRing )
13 simpr 110 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  X  e.  V )
147, 8, 12, 13unitcld 13740 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  X  e.  A )
15 eqid 2196 . . . . . 6  |-  ( invr `  S )  =  (
invr `  S )
16 eqid 2196 . . . . . 6  |-  ( Base `  S )  =  (
Base `  S )
173, 15, 16ringinvcl 13757 . . . . 5  |-  ( ( S  e.  Ring  /\  X  e.  V )  ->  (
( invr `  S ) `  X )  e.  (
Base `  S )
)
189, 17sylan 283 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  (
( invr `  S ) `  X )  e.  (
Base `  S )
)
19 subrgunit.4 . . . . 5  |-  I  =  ( invr `  R
)
201, 19, 3, 15subrginv 13869 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  (
I `  X )  =  ( ( invr `  S ) `  X
) )
2118, 20, 73eltr4d 2280 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  (
I `  X )  e.  A )
225, 14, 213jca 1179 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  ( X  e.  U  /\  X  e.  A  /\  ( I `  X
)  e.  A ) )
23 eqidd 2197 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( Base `  S )  =  ( Base `  S
) )
24 eqidd 2197 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ||r `
 S )  =  ( ||r `
 S ) )
2511adantr 276 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  S  e. SRing )
26 eqidd 2197 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( .r `  S
)  =  ( .r
`  S ) )
27 simpr2 1006 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X  e.  A )
286adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  A  =  ( Base `  S ) )
2927, 28eleqtrd 2275 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X  e.  ( Base `  S ) )
30 simpr3 1007 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( I `  X
)  e.  A )
3130, 28eleqtrd 2275 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( I `  X
)  e.  ( Base `  S ) )
3223, 24, 25, 26, 29, 31dvdsrmuld 13728 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X ( ||r `
 S ) ( ( I `  X
) ( .r `  S ) X ) )
33 subrgrcl 13858 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
34 simpr1 1005 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X  e.  U )
35 eqid 2196 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
36 eqid 2196 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
372, 19, 35, 36unitlinv 13758 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( I `  X
) ( .r `  R ) X )  =  ( 1r `  R ) )
3833, 34, 37syl2an2r 595 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  R ) X )  =  ( 1r
`  R ) )
391, 35ressmulrg 12847 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
4033, 39mpdan 421 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
4140adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( .r `  R
)  =  ( .r
`  S ) )
4241oveqd 5942 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  R ) X )  =  ( ( I `  X ) ( .r `  S
) X ) )
431, 36subrg1 13863 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  S ) )
4443adantr 276 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( 1r `  R
)  =  ( 1r
`  S ) )
4538, 42, 443eqtr3d 2237 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  S ) X )  =  ( 1r
`  S ) )
4632, 45breqtrd 4060 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X ( ||r `
 S ) ( 1r `  S ) )
479adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  S  e.  Ring )
48 eqid 2196 . . . . . . 7  |-  (oppr `  S
)  =  (oppr `  S
)
4948, 16opprbasg 13707 . . . . . 6  |-  ( S  e.  Ring  ->  ( Base `  S )  =  (
Base `  (oppr
`  S ) ) )
5047, 49syl 14 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( Base `  S )  =  ( Base `  (oppr `  S
) ) )
51 eqidd 2197 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ||r `
 (oppr
`  S ) )  =  ( ||r `
 (oppr
`  S ) ) )
5248opprring 13711 . . . . . 6  |-  ( S  e.  Ring  ->  (oppr `  S
)  e.  Ring )
53 ringsrg 13679 . . . . . 6  |-  ( (oppr `  S )  e.  Ring  -> 
(oppr `  S )  e. SRing )
5447, 52, 533syl 17 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
(oppr `  S )  e. SRing )
55 eqidd 2197 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( .r `  (oppr `  S
) )  =  ( .r `  (oppr `  S
) ) )
5650, 51, 54, 55, 29, 31dvdsrmuld 13728 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X ( ||r `
 (oppr
`  S ) ) ( ( I `  X ) ( .r
`  (oppr
`  S ) ) X ) )
57 eqid 2196 . . . . . . 7  |-  ( .r
`  S )  =  ( .r `  S
)
58 eqid 2196 . . . . . . 7  |-  ( .r
`  (oppr
`  S ) )  =  ( .r `  (oppr `  S ) )
5916, 57, 48, 58opprmulg 13703 . . . . . 6  |-  ( ( S  e.  Ring  /\  (
I `  X )  e.  ( Base `  S
)  /\  X  e.  ( Base `  S )
)  ->  ( (
I `  X )
( .r `  (oppr `  S
) ) X )  =  ( X ( .r `  S ) ( I `  X
) ) )
6047, 31, 29, 59syl3anc 1249 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  (oppr
`  S ) ) X )  =  ( X ( .r `  S ) ( I `
 X ) ) )
612, 19, 35, 36unitrinv 13759 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X ( .r `  R ) ( I `
 X ) )  =  ( 1r `  R ) )
6233, 34, 61syl2an2r 595 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( X ( .r
`  R ) ( I `  X ) )  =  ( 1r
`  R ) )
6341oveqd 5942 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( X ( .r
`  R ) ( I `  X ) )  =  ( X ( .r `  S
) ( I `  X ) ) )
6462, 63, 443eqtr3d 2237 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( X ( .r
`  S ) ( I `  X ) )  =  ( 1r
`  S ) )
6560, 64eqtrd 2229 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  (oppr
`  S ) ) X )  =  ( 1r `  S ) )
6656, 65breqtrd 4060 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) )
673a1i 9 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  V  =  (Unit `  S ) )
68 eqidd 2197 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  S )  =  ( 1r `  S ) )
69 eqidd 2197 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  S
)  =  ( ||r `  S
) )
70 eqidd 2197 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  (oppr
`  S )  =  (oppr
`  S ) )
71 eqidd 2197 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) ) )
7267, 68, 69, 70, 71, 11isunitd 13738 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( X  e.  V  <->  ( X (
||r `  S ) ( 1r
`  S )  /\  X ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) ) ) )
7372adantr 276 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( X  e.  V  <->  ( X ( ||r `
 S ) ( 1r `  S )  /\  X ( ||r `  (oppr `  S
) ) ( 1r
`  S ) ) ) )
7446, 66, 73mpbir2and 946 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X  e.  V )
7522, 74impbida 596 1  |-  ( A  e.  (SubRing `  R
)  ->  ( X  e.  V  <->  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   Basecbs 12703   ↾s cress 12704   .rcmulr 12781   1rcur 13591  SRingcsrg 13595   Ringcrg 13628  opprcoppr 13699   ||rcdsr 13718  Unitcui 13719   invrcinvr 13752  SubRingcsubrg 13849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-subg 13376  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-oppr 13700  df-dvdsr 13721  df-unit 13722  df-invr 13753  df-subrg 13851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator