Proof of Theorem subrgunit
| Step | Hyp | Ref
| Expression |
| 1 | | subrgugrp.1 |
. . . . 5

↾s   |
| 2 | | subrgugrp.2 |
. . . . 5
Unit   |
| 3 | | subrgugrp.3 |
. . . . 5
Unit   |
| 4 | 1, 2, 3 | subrguss 13868 |
. . . 4
 SubRing 
  |
| 5 | 4 | sselda 3184 |
. . 3
  SubRing 
   |
| 6 | 1 | subrgbas 13862 |
. . . . 5
 SubRing 
      |
| 7 | 6 | adantr 276 |
. . . 4
  SubRing 
       |
| 8 | 3 | a1i 9 |
. . . 4
  SubRing 
 Unit    |
| 9 | 1 | subrgring 13856 |
. . . . . 6
 SubRing 
  |
| 10 | | ringsrg 13679 |
. . . . . 6

SRing |
| 11 | 9, 10 | syl 14 |
. . . . 5
 SubRing 
SRing |
| 12 | 11 | adantr 276 |
. . . 4
  SubRing 
 SRing |
| 13 | | simpr 110 |
. . . 4
  SubRing 
   |
| 14 | 7, 8, 12, 13 | unitcld 13740 |
. . 3
  SubRing 
   |
| 15 | | eqid 2196 |
. . . . . 6
         |
| 16 | | eqid 2196 |
. . . . . 6
         |
| 17 | 3, 15, 16 | ringinvcl 13757 |
. . . . 5
                 |
| 18 | 9, 17 | sylan 283 |
. . . 4
  SubRing 
               |
| 19 | | subrgunit.4 |
. . . . 5
     |
| 20 | 1, 19, 3, 15 | subrginv 13869 |
. . . 4
  SubRing 
               |
| 21 | 18, 20, 7 | 3eltr4d 2280 |
. . 3
  SubRing 
       |
| 22 | 5, 14, 21 | 3jca 1179 |
. 2
  SubRing 
 
       |
| 23 | | eqidd 2197 |
. . . . 5
  SubRing 

                |
| 24 | | eqidd 2197 |
. . . . 5
  SubRing 

       r   r    |
| 25 | 11 | adantr 276 |
. . . . 5
  SubRing 

     
SRing |
| 26 | | eqidd 2197 |
. . . . 5
  SubRing 

                |
| 27 | | simpr2 1006 |
. . . . . 6
  SubRing 

     
  |
| 28 | 6 | adantr 276 |
. . . . . 6
  SubRing 

     
      |
| 29 | 27, 28 | eleqtrd 2275 |
. . . . 5
  SubRing 

     
      |
| 30 | | simpr3 1007 |
. . . . . 6
  SubRing 

            |
| 31 | 30, 28 | eleqtrd 2275 |
. . . . 5
  SubRing 

                |
| 32 | 23, 24, 25, 26, 29, 31 | dvdsrmuld 13728 |
. . . 4
  SubRing 

        r                 |
| 33 | | subrgrcl 13858 |
. . . . . 6
 SubRing 
  |
| 34 | | simpr1 1005 |
. . . . . 6
  SubRing 

     
  |
| 35 | | eqid 2196 |
. . . . . . 7
         |
| 36 | | eqid 2196 |
. . . . . . 7
         |
| 37 | 2, 19, 35, 36 | unitlinv 13758 |
. . . . . 6
                     |
| 38 | 33, 34, 37 | syl2an2r 595 |
. . . . 5
  SubRing 

                        |
| 39 | 1, 35 | ressmulrg 12847 |
. . . . . . . 8
  SubRing 

          |
| 40 | 33, 39 | mpdan 421 |
. . . . . . 7
 SubRing 
          |
| 41 | 40 | adantr 276 |
. . . . . 6
  SubRing 

                |
| 42 | 41 | oveqd 5942 |
. . . . 5
  SubRing 

                                |
| 43 | 1, 36 | subrg1 13863 |
. . . . . 6
 SubRing 
          |
| 44 | 43 | adantr 276 |
. . . . 5
  SubRing 

                |
| 45 | 38, 42, 44 | 3eqtr3d 2237 |
. . . 4
  SubRing 

                        |
| 46 | 32, 45 | breqtrd 4060 |
. . 3
  SubRing 

        r         |
| 47 | 9 | adantr 276 |
. . . . . 6
  SubRing 

     
  |
| 48 | | eqid 2196 |
. . . . . . 7
oppr  oppr   |
| 49 | 48, 16 | opprbasg 13707 |
. . . . . 6

       oppr     |
| 50 | 47, 49 | syl 14 |
. . . . 5
  SubRing 

             oppr     |
| 51 | | eqidd 2197 |
. . . . 5
  SubRing 

       r oppr    r oppr     |
| 52 | 48 | opprring 13711 |
. . . . . 6

oppr    |
| 53 | | ringsrg 13679 |
. . . . . 6
 oppr  oppr  SRing |
| 54 | 47, 52, 53 | 3syl 17 |
. . . . 5
  SubRing 

      oppr  SRing |
| 55 | | eqidd 2197 |
. . . . 5
  SubRing 

         oppr      oppr     |
| 56 | 50, 51, 54, 55, 29, 31 | dvdsrmuld 13728 |
. . . 4
  SubRing 

        r oppr             oppr       |
| 57 | | eqid 2196 |
. . . . . . 7
         |
| 58 | | eqid 2196 |
. . . . . . 7
   oppr      oppr    |
| 59 | 16, 57, 48, 58 | opprmulg 13703 |
. . . . . 6
         
    
         oppr                   |
| 60 | 47, 31, 29, 59 | syl3anc 1249 |
. . . . 5
  SubRing 

               oppr                   |
| 61 | 2, 19, 35, 36 | unitrinv 13759 |
. . . . . . 7
                     |
| 62 | 33, 34, 61 | syl2an2r 595 |
. . . . . 6
  SubRing 

                        |
| 63 | 41 | oveqd 5942 |
. . . . . 6
  SubRing 

                                |
| 64 | 62, 63, 44 | 3eqtr3d 2237 |
. . . . 5
  SubRing 

                        |
| 65 | 60, 64 | eqtrd 2229 |
. . . 4
  SubRing 

               oppr           |
| 66 | 56, 65 | breqtrd 4060 |
. . 3
  SubRing 

        r oppr          |
| 67 | 3 | a1i 9 |
. . . . 5
 SubRing 
Unit    |
| 68 | | eqidd 2197 |
. . . . 5
 SubRing 
          |
| 69 | | eqidd 2197 |
. . . . 5
 SubRing 
 r   r    |
| 70 | | eqidd 2197 |
. . . . 5
 SubRing 
oppr  oppr    |
| 71 | | eqidd 2197 |
. . . . 5
 SubRing 
 r oppr    r oppr     |
| 72 | 67, 68, 69, 70, 71, 11 | isunitd 13738 |
. . . 4
 SubRing 

   r         r oppr            |
| 73 | 72 | adantr 276 |
. . 3
  SubRing 

          r         r oppr            |
| 74 | 46, 66, 73 | mpbir2and 946 |
. 2
  SubRing 

     
  |
| 75 | 22, 74 | impbida 596 |
1
 SubRing 

         |