ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgmcl Unicode version

Theorem subrgmcl 13448
Description: A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subrgmcl.p  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
subrgmcl  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  ( X  .x.  Y )  e.  A
)

Proof of Theorem subrgmcl
StepHypRef Expression
1 eqid 2187 . . . . 5  |-  ( Rs  A )  =  ( Rs  A )
21subrgring 13439 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( Rs  A
)  e.  Ring )
323ad2ant1 1019 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  ( Rs  A
)  e.  Ring )
4 simp2 999 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  X  e.  A )
51subrgbas 13445 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  ( Rs  A
) ) )
653ad2ant1 1019 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  A  =  ( Base `  ( Rs  A
) ) )
74, 6eleqtrd 2266 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  X  e.  ( Base `  ( Rs  A
) ) )
8 simp3 1000 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  Y  e.  A )
98, 6eleqtrd 2266 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  Y  e.  ( Base `  ( Rs  A
) ) )
10 eqid 2187 . . . 4  |-  ( Base `  ( Rs  A ) )  =  ( Base `  ( Rs  A ) )
11 eqid 2187 . . . 4  |-  ( .r
`  ( Rs  A ) )  =  ( .r
`  ( Rs  A ) )
1210, 11ringcl 13260 . . 3  |-  ( ( ( Rs  A )  e.  Ring  /\  X  e.  ( Base `  ( Rs  A ) )  /\  Y  e.  ( Base `  ( Rs  A ) ) )  ->  ( X ( .r `  ( Rs  A ) ) Y )  e.  ( Base `  ( Rs  A ) ) )
133, 7, 9, 12syl3anc 1248 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  ( X
( .r `  ( Rs  A ) ) Y )  e.  ( Base `  ( Rs  A ) ) )
14 subrgrcl 13441 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
15 subrgmcl.p . . . . . 6  |-  .x.  =  ( .r `  R )
161, 15ressmulrg 12617 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
1714, 16mpdan 421 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  .x.  =  ( .r `  ( Rs  A ) ) )
18173ad2ant1 1019 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  .x.  =  ( .r `  ( Rs  A ) ) )
1918oveqd 5905 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  ( X  .x.  Y )  =  ( X ( .r `  ( Rs  A ) ) Y ) )
2013, 19, 63eltr4d 2271 1  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  ( X  .x.  Y )  e.  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 979    = wceq 1363    e. wcel 2158   ` cfv 5228  (class class class)co 5888   Basecbs 12475   ↾s cress 12476   .rcmulr 12551   Ringcrg 13243  SubRingcsubrg 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-pre-ltirr 7936  ax-pre-lttrn 7938  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8007  df-mnf 8008  df-ltxr 8010  df-inn 8933  df-2 8991  df-3 8992  df-ndx 12478  df-slot 12479  df-base 12481  df-sets 12482  df-iress 12483  df-plusg 12563  df-mulr 12564  df-mgm 12793  df-sgrp 12826  df-mnd 12839  df-subg 13061  df-mgp 13171  df-ring 13245  df-subrg 13434
This theorem is referenced by:  issubrg2  13456  subrgintm  13458
  Copyright terms: Public domain W3C validator