ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgmcl Unicode version

Theorem subrgmcl 14191
Description: A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subrgmcl.p  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
subrgmcl  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  ( X  .x.  Y )  e.  A
)

Proof of Theorem subrgmcl
StepHypRef Expression
1 eqid 2229 . . . . 5  |-  ( Rs  A )  =  ( Rs  A )
21subrgring 14182 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( Rs  A
)  e.  Ring )
323ad2ant1 1042 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  ( Rs  A
)  e.  Ring )
4 simp2 1022 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  X  e.  A )
51subrgbas 14188 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  ( Rs  A
) ) )
653ad2ant1 1042 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  A  =  ( Base `  ( Rs  A
) ) )
74, 6eleqtrd 2308 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  X  e.  ( Base `  ( Rs  A
) ) )
8 simp3 1023 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  Y  e.  A )
98, 6eleqtrd 2308 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  Y  e.  ( Base `  ( Rs  A
) ) )
10 eqid 2229 . . . 4  |-  ( Base `  ( Rs  A ) )  =  ( Base `  ( Rs  A ) )
11 eqid 2229 . . . 4  |-  ( .r
`  ( Rs  A ) )  =  ( .r
`  ( Rs  A ) )
1210, 11ringcl 13971 . . 3  |-  ( ( ( Rs  A )  e.  Ring  /\  X  e.  ( Base `  ( Rs  A ) )  /\  Y  e.  ( Base `  ( Rs  A ) ) )  ->  ( X ( .r `  ( Rs  A ) ) Y )  e.  ( Base `  ( Rs  A ) ) )
133, 7, 9, 12syl3anc 1271 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  ( X
( .r `  ( Rs  A ) ) Y )  e.  ( Base `  ( Rs  A ) ) )
14 subrgrcl 14184 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
15 subrgmcl.p . . . . . 6  |-  .x.  =  ( .r `  R )
161, 15ressmulrg 13173 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
1714, 16mpdan 421 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  .x.  =  ( .r `  ( Rs  A ) ) )
18173ad2ant1 1042 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  .x.  =  ( .r `  ( Rs  A ) ) )
1918oveqd 6017 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  ( X  .x.  Y )  =  ( X ( .r `  ( Rs  A ) ) Y ) )
2013, 19, 63eltr4d 2313 1  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  A  /\  Y  e.  A
)  ->  ( X  .x.  Y )  e.  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5317  (class class class)co 6000   Basecbs 13027   ↾s cress 13028   .rcmulr 13106   Ringcrg 13954  SubRingcsubrg 14175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-subg 13702  df-mgp 13879  df-ring 13956  df-subrg 14177
This theorem is referenced by:  issubrg2  14199  subrgintm  14201  dvply2g  15434
  Copyright terms: Public domain W3C validator