ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnndir Unicode version

Theorem mulgnndir 12965
Description: Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
Hypotheses
Ref Expression
mulgnndir.b  |-  B  =  ( Base `  G
)
mulgnndir.t  |-  .x.  =  (.g
`  G )
mulgnndir.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnndir  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )

Proof of Theorem mulgnndir
Dummy variables  x  y  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrpmgm 12767 . . . . . 6  |-  ( G  e. Smgrp  ->  G  e. Mgm )
2 mulgnndir.b . . . . . . 7  |-  B  =  ( Base `  G
)
3 mulgnndir.p . . . . . . 7  |-  .+  =  ( +g  `  G )
42, 3mgmcl 12732 . . . . . 6  |-  ( ( G  e. Mgm  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  e.  B )
51, 4syl3an1 1271 . . . . 5  |-  ( ( G  e. Smgrp  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  e.  B )
653expb 1204 . . . 4  |-  ( ( G  e. Smgrp  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  e.  B
)
76adantlr 477 . . 3  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
82, 3sgrpass 12768 . . . 4  |-  ( ( G  e. Smgrp  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
98adantlr 477 . . 3  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
10 simpr2 1004 . . . . . 6  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  N  e.  NN )
11 nnuz 9561 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
1210, 11eleqtrdi 2270 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  N  e.  ( ZZ>= ` 
1 ) )
13 simpr1 1003 . . . . . 6  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  NN )
1413nnzd 9372 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  ZZ )
15 eluzadd 9554 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
1 )  /\  M  e.  ZZ )  ->  ( N  +  M )  e.  ( ZZ>= `  ( 1  +  M ) ) )
1612, 14, 15syl2anc 411 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( N  +  M
)  e.  ( ZZ>= `  ( 1  +  M
) ) )
1713nncnd 8931 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  CC )
1810nncnd 8931 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  N  e.  CC )
1917, 18addcomd 8106 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  N
)  =  ( N  +  M ) )
20 ax-1cn 7903 . . . . . 6  |-  1  e.  CC
21 addcom 8092 . . . . . 6  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( M  +  1 )  =  ( 1  +  M ) )
2217, 20, 21sylancl 413 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  1 )  =  ( 1  +  M ) )
2322fveq2d 5519 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ZZ>= `  ( M  +  1 ) )  =  ( ZZ>= `  (
1  +  M ) ) )
2416, 19, 233eltr4d 2261 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  N
)  e.  ( ZZ>= `  ( M  +  1
) ) )
2513, 11eleqtrdi 2270 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  ( ZZ>= ` 
1 ) )
26 simpr3 1005 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  X  e.  B )
2711, 26ialgrlemconst 12037 . . 3  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { X } ) `  x )  e.  B
)
287, 9, 24, 25, 27seq3split 10476 . 2  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
(  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) )  =  ( (  seq 1
(  .+  ,  ( NN  X.  { X }
) ) `  M
)  .+  (  seq ( M  +  1
) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) ) )
2913, 10nnaddcld 8965 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  N
)  e.  NN )
30 mulgnndir.t . . . 4  |-  .x.  =  (.g
`  G )
31 eqid 2177 . . . 4  |-  seq 1
(  .+  ,  ( NN  X.  { X }
) )  =  seq 1 (  .+  , 
( NN  X.  { X } ) )
322, 3, 30, 31mulgnn 12943 . . 3  |-  ( ( ( M  +  N
)  e.  NN  /\  X  e.  B )  ->  ( ( M  +  N )  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) )
3329, 26, 32syl2anc 411 . 2  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) )
342, 3, 30, 31mulgnn 12943 . . . 4  |-  ( ( M  e.  NN  /\  X  e.  B )  ->  ( M  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  M ) )
3513, 26, 34syl2anc 411 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  M ) )
36 elfznn 10051 . . . . . . 7  |-  ( x  e.  ( 1 ... N )  ->  x  e.  NN )
37 fvconst2g 5730 . . . . . . 7  |-  ( ( X  e.  B  /\  x  e.  NN )  ->  ( ( NN  X.  { X } ) `  x )  =  X )
3826, 36, 37syl2an 289 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( ( NN 
X.  { X }
) `  x )  =  X )
39 nnaddcl 8937 . . . . . . . 8  |-  ( ( x  e.  NN  /\  M  e.  NN )  ->  ( x  +  M
)  e.  NN )
4036, 13, 39syl2anr 290 . . . . . . 7  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( x  +  M )  e.  NN )
41 fvconst2g 5730 . . . . . . 7  |-  ( ( X  e.  B  /\  ( x  +  M
)  e.  NN )  ->  ( ( NN 
X.  { X }
) `  ( x  +  M ) )  =  X )
4226, 40, 41syl2an2r 595 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( ( NN 
X.  { X }
) `  ( x  +  M ) )  =  X )
4338, 42eqtr4d 2213 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( ( NN 
X.  { X }
) `  x )  =  ( ( NN 
X.  { X }
) `  ( x  +  M ) ) )
44 elnnuz 9562 . . . . . . 7  |-  ( u  e.  NN  <->  u  e.  ( ZZ>= `  1 )
)
4544biimpri 133 . . . . . 6  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  NN )
46 fvconst2g 5730 . . . . . . . 8  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  =  X )
47 simpl 109 . . . . . . . 8  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  X  e.  B )
4846, 47eqeltrd 2254 . . . . . . 7  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  B
)
4948elexd 2750 . . . . . 6  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  _V )
5026, 45, 49syl2an 289 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { X } ) `  u )  e.  _V )
51 1nn 8928 . . . . . . . . 9  |-  1  e.  NN
5251a1i 9 . . . . . . . 8  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  -> 
1  e.  NN )
5313adantr 276 . . . . . . . 8  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  ->  M  e.  NN )
5452, 53nnaddcld 8965 . . . . . . 7  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  -> 
( 1  +  M
)  e.  NN )
55 eluznn 9598 . . . . . . 7  |-  ( ( ( 1  +  M
)  e.  NN  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  ->  u  e.  NN )
5654, 55sylancom 420 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  ->  u  e.  NN )
5726, 56, 49syl2an2r 595 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  -> 
( ( NN  X.  { X } ) `  u )  e.  _V )
58 simprl 529 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  u  e.  _V )
59 plusgslid 12565 . . . . . . . . 9  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
6059slotex 12483 . . . . . . . 8  |-  ( G  e. Smgrp  ->  ( +g  `  G
)  e.  _V )
613, 60eqeltrid 2264 . . . . . . 7  |-  ( G  e. Smgrp  ->  .+  e.  _V )
6261ad2antrr 488 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  .+  e.  _V )
63 simprr 531 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  v  e.  _V )
64 ovexg 5908 . . . . . 6  |-  ( ( u  e.  _V  /\  .+  e.  _V  /\  v  e.  _V )  ->  (
u  .+  v )  e.  _V )
6558, 62, 63, 64syl3anc 1238 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  ( u  .+  v )  e.  _V )
6612, 14, 43, 50, 57, 65seq3shft2 10470 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
(  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N )  =  (  seq ( 1  +  M ) ( 
.+  ,  ( NN 
X.  { X }
) ) `  ( N  +  M )
) )
672, 3, 30, 31mulgnn 12943 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
6810, 26, 67syl2anc 411 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( N  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
6922seqeq1d 10448 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  seq ( M  +  1 ) (  .+  , 
( NN  X.  { X } ) )  =  seq ( 1  +  M ) (  .+  ,  ( NN  X.  { X } ) ) )
7069, 19fveq12d 5522 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
(  seq ( M  + 
1 ) (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) )  =  (  seq ( 1  +  M ) ( 
.+  ,  ( NN 
X.  { X }
) ) `  ( N  +  M )
) )
7166, 68, 703eqtr4d 2220 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( N  .x.  X
)  =  (  seq ( M  +  1 ) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) )
7235, 71oveq12d 5892 . 2  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  .x.  X )  .+  ( N  .x.  X ) )  =  ( (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  M )  .+  (  seq ( M  +  1 ) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) ) )
7328, 33, 723eqtr4d 2220 1  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   _Vcvv 2737   {csn 3592    X. cxp 4624   ` cfv 5216  (class class class)co 5874   CCcc 7808   1c1 7811    + caddc 7813   NNcn 8917   ZZcz 9251   ZZ>=cuz 9526   ...cfz 10006    seqcseq 10442   Basecbs 12456   +g cplusg 12530  Mgmcmgm 12727  Smgrpcsgrp 12761  .gcmg 12937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-inn 8918  df-2 8976  df-n0 9175  df-z 9252  df-uz 9527  df-fz 10007  df-seqfrec 10443  df-ndx 12459  df-slot 12460  df-base 12462  df-plusg 12543  df-0g 12697  df-mgm 12729  df-sgrp 12762  df-minusg 12835  df-mulg 12938
This theorem is referenced by:  mulgnn0dir  12966  mulgnnass  12971
  Copyright terms: Public domain W3C validator