ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnndir Unicode version

Theorem mulgnndir 13520
Description: Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
Hypotheses
Ref Expression
mulgnndir.b  |-  B  =  ( Base `  G
)
mulgnndir.t  |-  .x.  =  (.g
`  G )
mulgnndir.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnndir  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )

Proof of Theorem mulgnndir
Dummy variables  x  y  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrpmgm 13272 . . . . . 6  |-  ( G  e. Smgrp  ->  G  e. Mgm )
2 mulgnndir.b . . . . . . 7  |-  B  =  ( Base `  G
)
3 mulgnndir.p . . . . . . 7  |-  .+  =  ( +g  `  G )
42, 3mgmcl 13224 . . . . . 6  |-  ( ( G  e. Mgm  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  e.  B )
51, 4syl3an1 1283 . . . . 5  |-  ( ( G  e. Smgrp  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  e.  B )
653expb 1207 . . . 4  |-  ( ( G  e. Smgrp  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  e.  B
)
76adantlr 477 . . 3  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
82, 3sgrpass 13273 . . . 4  |-  ( ( G  e. Smgrp  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
98adantlr 477 . . 3  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
10 simpr2 1007 . . . . . 6  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  N  e.  NN )
11 nnuz 9686 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
1210, 11eleqtrdi 2298 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  N  e.  ( ZZ>= ` 
1 ) )
13 simpr1 1006 . . . . . 6  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  NN )
1413nnzd 9496 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  ZZ )
15 eluzadd 9679 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
1 )  /\  M  e.  ZZ )  ->  ( N  +  M )  e.  ( ZZ>= `  ( 1  +  M ) ) )
1612, 14, 15syl2anc 411 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( N  +  M
)  e.  ( ZZ>= `  ( 1  +  M
) ) )
1713nncnd 9052 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  CC )
1810nncnd 9052 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  N  e.  CC )
1917, 18addcomd 8225 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  N
)  =  ( N  +  M ) )
20 ax-1cn 8020 . . . . . 6  |-  1  e.  CC
21 addcom 8211 . . . . . 6  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( M  +  1 )  =  ( 1  +  M ) )
2217, 20, 21sylancl 413 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  1 )  =  ( 1  +  M ) )
2322fveq2d 5582 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ZZ>= `  ( M  +  1 ) )  =  ( ZZ>= `  (
1  +  M ) ) )
2416, 19, 233eltr4d 2289 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  N
)  e.  ( ZZ>= `  ( M  +  1
) ) )
2513, 11eleqtrdi 2298 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  ( ZZ>= ` 
1 ) )
26 simpr3 1008 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  X  e.  B )
2711, 26ialgrlemconst 12398 . . 3  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { X } ) `  x )  e.  B
)
287, 9, 24, 25, 27seq3split 10635 . 2  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
(  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) )  =  ( (  seq 1
(  .+  ,  ( NN  X.  { X }
) ) `  M
)  .+  (  seq ( M  +  1
) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) ) )
2913, 10nnaddcld 9086 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  N
)  e.  NN )
30 mulgnndir.t . . . 4  |-  .x.  =  (.g
`  G )
31 eqid 2205 . . . 4  |-  seq 1
(  .+  ,  ( NN  X.  { X }
) )  =  seq 1 (  .+  , 
( NN  X.  { X } ) )
322, 3, 30, 31mulgnn 13495 . . 3  |-  ( ( ( M  +  N
)  e.  NN  /\  X  e.  B )  ->  ( ( M  +  N )  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) )
3329, 26, 32syl2anc 411 . 2  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) )
342, 3, 30, 31mulgnn 13495 . . . 4  |-  ( ( M  e.  NN  /\  X  e.  B )  ->  ( M  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  M ) )
3513, 26, 34syl2anc 411 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  M ) )
36 elfznn 10178 . . . . . . 7  |-  ( x  e.  ( 1 ... N )  ->  x  e.  NN )
37 fvconst2g 5800 . . . . . . 7  |-  ( ( X  e.  B  /\  x  e.  NN )  ->  ( ( NN  X.  { X } ) `  x )  =  X )
3826, 36, 37syl2an 289 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( ( NN 
X.  { X }
) `  x )  =  X )
39 nnaddcl 9058 . . . . . . . 8  |-  ( ( x  e.  NN  /\  M  e.  NN )  ->  ( x  +  M
)  e.  NN )
4036, 13, 39syl2anr 290 . . . . . . 7  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( x  +  M )  e.  NN )
41 fvconst2g 5800 . . . . . . 7  |-  ( ( X  e.  B  /\  ( x  +  M
)  e.  NN )  ->  ( ( NN 
X.  { X }
) `  ( x  +  M ) )  =  X )
4226, 40, 41syl2an2r 595 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( ( NN 
X.  { X }
) `  ( x  +  M ) )  =  X )
4338, 42eqtr4d 2241 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( ( NN 
X.  { X }
) `  x )  =  ( ( NN 
X.  { X }
) `  ( x  +  M ) ) )
44 elnnuz 9687 . . . . . . 7  |-  ( u  e.  NN  <->  u  e.  ( ZZ>= `  1 )
)
4544biimpri 133 . . . . . 6  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  NN )
46 fvconst2g 5800 . . . . . . . 8  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  =  X )
47 simpl 109 . . . . . . . 8  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  X  e.  B )
4846, 47eqeltrd 2282 . . . . . . 7  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  B
)
4948elexd 2785 . . . . . 6  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  _V )
5026, 45, 49syl2an 289 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { X } ) `  u )  e.  _V )
51 1nn 9049 . . . . . . . . 9  |-  1  e.  NN
5251a1i 9 . . . . . . . 8  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  -> 
1  e.  NN )
5313adantr 276 . . . . . . . 8  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  ->  M  e.  NN )
5452, 53nnaddcld 9086 . . . . . . 7  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  -> 
( 1  +  M
)  e.  NN )
55 eluznn 9723 . . . . . . 7  |-  ( ( ( 1  +  M
)  e.  NN  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  ->  u  e.  NN )
5654, 55sylancom 420 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  ->  u  e.  NN )
5726, 56, 49syl2an2r 595 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  -> 
( ( NN  X.  { X } ) `  u )  e.  _V )
58 simprl 529 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  u  e.  _V )
59 plusgslid 12977 . . . . . . . . 9  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
6059slotex 12892 . . . . . . . 8  |-  ( G  e. Smgrp  ->  ( +g  `  G
)  e.  _V )
613, 60eqeltrid 2292 . . . . . . 7  |-  ( G  e. Smgrp  ->  .+  e.  _V )
6261ad2antrr 488 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  .+  e.  _V )
63 simprr 531 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  v  e.  _V )
64 ovexg 5980 . . . . . 6  |-  ( ( u  e.  _V  /\  .+  e.  _V  /\  v  e.  _V )  ->  (
u  .+  v )  e.  _V )
6558, 62, 63, 64syl3anc 1250 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  ( u  .+  v )  e.  _V )
6612, 14, 43, 50, 57, 65seq3shft2 10628 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
(  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N )  =  (  seq ( 1  +  M ) ( 
.+  ,  ( NN 
X.  { X }
) ) `  ( N  +  M )
) )
672, 3, 30, 31mulgnn 13495 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
6810, 26, 67syl2anc 411 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( N  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
6922seqeq1d 10600 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  seq ( M  +  1 ) (  .+  , 
( NN  X.  { X } ) )  =  seq ( 1  +  M ) (  .+  ,  ( NN  X.  { X } ) ) )
7069, 19fveq12d 5585 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
(  seq ( M  + 
1 ) (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) )  =  (  seq ( 1  +  M ) ( 
.+  ,  ( NN 
X.  { X }
) ) `  ( N  +  M )
) )
7166, 68, 703eqtr4d 2248 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( N  .x.  X
)  =  (  seq ( M  +  1 ) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) )
7235, 71oveq12d 5964 . 2  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  .x.  X )  .+  ( N  .x.  X ) )  =  ( (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  M )  .+  (  seq ( M  +  1 ) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) ) )
7328, 33, 723eqtr4d 2248 1  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   _Vcvv 2772   {csn 3633    X. cxp 4674   ` cfv 5272  (class class class)co 5946   CCcc 7925   1c1 7928    + caddc 7930   NNcn 9038   ZZcz 9374   ZZ>=cuz 9650   ...cfz 10132    seqcseq 10594   Basecbs 12865   +g cplusg 12942  Mgmcmgm 13219  Smgrpcsgrp 13266  .gcmg 13488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-2 9097  df-n0 9298  df-z 9375  df-uz 9651  df-fz 10133  df-seqfrec 10595  df-ndx 12868  df-slot 12869  df-base 12871  df-plusg 12955  df-0g 13123  df-mgm 13221  df-sgrp 13267  df-minusg 13369  df-mulg 13489
This theorem is referenced by:  mulgnn0dir  13521  mulgnnass  13526
  Copyright terms: Public domain W3C validator