ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnndir Unicode version

Theorem mulgnndir 12867
Description: Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
Hypotheses
Ref Expression
mulgnndir.b  |-  B  =  ( Base `  G
)
mulgnndir.t  |-  .x.  =  (.g
`  G )
mulgnndir.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnndir  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )

Proof of Theorem mulgnndir
Dummy variables  x  y  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrpmgm 12675 . . . . . 6  |-  ( G  e. Smgrp  ->  G  e. Mgm )
2 mulgnndir.b . . . . . . 7  |-  B  =  ( Base `  G
)
3 mulgnndir.p . . . . . . 7  |-  .+  =  ( +g  `  G )
42, 3mgmcl 12640 . . . . . 6  |-  ( ( G  e. Mgm  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  e.  B )
51, 4syl3an1 1269 . . . . 5  |-  ( ( G  e. Smgrp  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  e.  B )
653expb 1202 . . . 4  |-  ( ( G  e. Smgrp  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  e.  B
)
76adantlr 477 . . 3  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
82, 3sgrpass 12676 . . . 4  |-  ( ( G  e. Smgrp  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
98adantlr 477 . . 3  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
10 simpr2 1002 . . . . . 6  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  N  e.  NN )
11 nnuz 9531 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
1210, 11eleqtrdi 2266 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  N  e.  ( ZZ>= ` 
1 ) )
13 simpr1 1001 . . . . . 6  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  NN )
1413nnzd 9342 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  ZZ )
15 eluzadd 9524 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
1 )  /\  M  e.  ZZ )  ->  ( N  +  M )  e.  ( ZZ>= `  ( 1  +  M ) ) )
1612, 14, 15syl2anc 411 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( N  +  M
)  e.  ( ZZ>= `  ( 1  +  M
) ) )
1713nncnd 8901 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  CC )
1810nncnd 8901 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  N  e.  CC )
1917, 18addcomd 8079 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  N
)  =  ( N  +  M ) )
20 ax-1cn 7876 . . . . . 6  |-  1  e.  CC
21 addcom 8065 . . . . . 6  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( M  +  1 )  =  ( 1  +  M ) )
2217, 20, 21sylancl 413 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  1 )  =  ( 1  +  M ) )
2322fveq2d 5508 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ZZ>= `  ( M  +  1 ) )  =  ( ZZ>= `  (
1  +  M ) ) )
2416, 19, 233eltr4d 2257 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  N
)  e.  ( ZZ>= `  ( M  +  1
) ) )
2513, 11eleqtrdi 2266 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  ( ZZ>= ` 
1 ) )
26 simpr3 1003 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  X  e.  B )
2711, 26ialgrlemconst 12006 . . 3  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { X } ) `  x )  e.  B
)
287, 9, 24, 25, 27seq3split 10444 . 2  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
(  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) )  =  ( (  seq 1
(  .+  ,  ( NN  X.  { X }
) ) `  M
)  .+  (  seq ( M  +  1
) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) ) )
2913, 10nnaddcld 8935 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  N
)  e.  NN )
30 mulgnndir.t . . . 4  |-  .x.  =  (.g
`  G )
31 eqid 2173 . . . 4  |-  seq 1
(  .+  ,  ( NN  X.  { X }
) )  =  seq 1 (  .+  , 
( NN  X.  { X } ) )
322, 3, 30, 31mulgnn 12845 . . 3  |-  ( ( ( M  +  N
)  e.  NN  /\  X  e.  B )  ->  ( ( M  +  N )  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) )
3329, 26, 32syl2anc 411 . 2  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) )
342, 3, 30, 31mulgnn 12845 . . . 4  |-  ( ( M  e.  NN  /\  X  e.  B )  ->  ( M  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  M ) )
3513, 26, 34syl2anc 411 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  M ) )
36 elfznn 10019 . . . . . . 7  |-  ( x  e.  ( 1 ... N )  ->  x  e.  NN )
37 fvconst2g 5719 . . . . . . 7  |-  ( ( X  e.  B  /\  x  e.  NN )  ->  ( ( NN  X.  { X } ) `  x )  =  X )
3826, 36, 37syl2an 289 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( ( NN 
X.  { X }
) `  x )  =  X )
39 nnaddcl 8907 . . . . . . . 8  |-  ( ( x  e.  NN  /\  M  e.  NN )  ->  ( x  +  M
)  e.  NN )
4036, 13, 39syl2anr 290 . . . . . . 7  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( x  +  M )  e.  NN )
41 fvconst2g 5719 . . . . . . 7  |-  ( ( X  e.  B  /\  ( x  +  M
)  e.  NN )  ->  ( ( NN 
X.  { X }
) `  ( x  +  M ) )  =  X )
4226, 40, 41syl2an2r 593 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( ( NN 
X.  { X }
) `  ( x  +  M ) )  =  X )
4338, 42eqtr4d 2209 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( ( NN 
X.  { X }
) `  x )  =  ( ( NN 
X.  { X }
) `  ( x  +  M ) ) )
44 elnnuz 9532 . . . . . . 7  |-  ( u  e.  NN  <->  u  e.  ( ZZ>= `  1 )
)
4544biimpri 133 . . . . . 6  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  NN )
46 fvconst2g 5719 . . . . . . . 8  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  =  X )
47 simpl 109 . . . . . . . 8  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  X  e.  B )
4846, 47eqeltrd 2250 . . . . . . 7  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  B
)
4948elexd 2746 . . . . . 6  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  _V )
5026, 45, 49syl2an 289 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { X } ) `  u )  e.  _V )
51 1nn 8898 . . . . . . . . 9  |-  1  e.  NN
5251a1i 9 . . . . . . . 8  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  -> 
1  e.  NN )
5313adantr 276 . . . . . . . 8  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  ->  M  e.  NN )
5452, 53nnaddcld 8935 . . . . . . 7  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  -> 
( 1  +  M
)  e.  NN )
55 eluznn 9568 . . . . . . 7  |-  ( ( ( 1  +  M
)  e.  NN  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  ->  u  e.  NN )
5654, 55sylancom 420 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  ->  u  e.  NN )
5726, 56, 49syl2an2r 593 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  -> 
( ( NN  X.  { X } ) `  u )  e.  _V )
58 simprl 529 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  u  e.  _V )
59 plusgslid 12522 . . . . . . . . 9  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
6059slotex 12452 . . . . . . . 8  |-  ( G  e. Smgrp  ->  ( +g  `  G
)  e.  _V )
613, 60eqeltrid 2260 . . . . . . 7  |-  ( G  e. Smgrp  ->  .+  e.  _V )
6261ad2antrr 488 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  .+  e.  _V )
63 simprr 530 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  v  e.  _V )
64 ovexg 5896 . . . . . 6  |-  ( ( u  e.  _V  /\  .+  e.  _V  /\  v  e.  _V )  ->  (
u  .+  v )  e.  _V )
6558, 62, 63, 64syl3anc 1236 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  ( u  .+  v )  e.  _V )
6612, 14, 43, 50, 57, 65seq3shft2 10438 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
(  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N )  =  (  seq ( 1  +  M ) ( 
.+  ,  ( NN 
X.  { X }
) ) `  ( N  +  M )
) )
672, 3, 30, 31mulgnn 12845 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
6810, 26, 67syl2anc 411 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( N  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
6922seqeq1d 10416 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  seq ( M  +  1 ) (  .+  , 
( NN  X.  { X } ) )  =  seq ( 1  +  M ) (  .+  ,  ( NN  X.  { X } ) ) )
7069, 19fveq12d 5511 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
(  seq ( M  + 
1 ) (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) )  =  (  seq ( 1  +  M ) ( 
.+  ,  ( NN 
X.  { X }
) ) `  ( N  +  M )
) )
7166, 68, 703eqtr4d 2216 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( N  .x.  X
)  =  (  seq ( M  +  1 ) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) )
7235, 71oveq12d 5880 . 2  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  .x.  X )  .+  ( N  .x.  X ) )  =  ( (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  M )  .+  (  seq ( M  +  1 ) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) ) )
7328, 33, 723eqtr4d 2216 1  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 976    = wceq 1351    e. wcel 2144   _Vcvv 2733   {csn 3586    X. cxp 4615   ` cfv 5205  (class class class)co 5862   CCcc 7781   1c1 7784    + caddc 7786   NNcn 8887   ZZcz 9221   ZZ>=cuz 9496   ...cfz 9974    seqcseq 10410   Basecbs 12425   +g cplusg 12489  Mgmcmgm 12635  Smgrpcsgrp 12669  .gcmg 12839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 612  ax-in2 613  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-13 2146  ax-14 2147  ax-ext 2155  ax-coll 4110  ax-sep 4113  ax-nul 4121  ax-pow 4166  ax-pr 4200  ax-un 4424  ax-setind 4527  ax-iinf 4578  ax-cnex 7874  ax-resscn 7875  ax-1cn 7876  ax-1re 7877  ax-icn 7878  ax-addcl 7879  ax-addrcl 7880  ax-mulcl 7881  ax-addcom 7883  ax-addass 7885  ax-distr 7887  ax-i2m1 7888  ax-0lt1 7889  ax-0id 7891  ax-rnegex 7892  ax-cnre 7894  ax-pre-ltirr 7895  ax-pre-ltwlin 7896  ax-pre-lttrn 7897  ax-pre-ltadd 7899
This theorem depends on definitions:  df-bi 117  df-dc 833  df-3or 977  df-3an 978  df-tru 1354  df-fal 1357  df-nf 1457  df-sb 1759  df-eu 2025  df-mo 2026  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-ne 2344  df-nel 2439  df-ral 2456  df-rex 2457  df-reu 2458  df-rab 2460  df-v 2735  df-sbc 2959  df-csb 3053  df-dif 3126  df-un 3128  df-in 3130  df-ss 3137  df-nul 3418  df-if 3530  df-pw 3571  df-sn 3592  df-pr 3593  df-op 3595  df-uni 3803  df-int 3838  df-iun 3881  df-br 3996  df-opab 4057  df-mpt 4058  df-tr 4094  df-id 4284  df-iord 4357  df-on 4359  df-ilim 4360  df-suc 4362  df-iom 4581  df-xp 4623  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-res 4629  df-ima 4630  df-iota 5167  df-fun 5207  df-fn 5208  df-f 5209  df-f1 5210  df-fo 5211  df-f1o 5212  df-fv 5213  df-riota 5818  df-ov 5865  df-oprab 5866  df-mpo 5867  df-1st 6128  df-2nd 6129  df-recs 6293  df-frec 6379  df-pnf 7965  df-mnf 7966  df-xr 7967  df-ltxr 7968  df-le 7969  df-sub 8101  df-neg 8102  df-inn 8888  df-2 8946  df-n0 9145  df-z 9222  df-uz 9497  df-fz 9975  df-seqfrec 10411  df-ndx 12428  df-slot 12429  df-base 12431  df-plusg 12502  df-0g 12625  df-mgm 12637  df-sgrp 12670  df-minusg 12739  df-mulg 12840
This theorem is referenced by:  mulgnn0dir  12868  mulgnnass  12873
  Copyright terms: Public domain W3C validator