ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnndir Unicode version

Theorem mulgnndir 13602
Description: Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
Hypotheses
Ref Expression
mulgnndir.b  |-  B  =  ( Base `  G
)
mulgnndir.t  |-  .x.  =  (.g
`  G )
mulgnndir.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnndir  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )

Proof of Theorem mulgnndir
Dummy variables  x  y  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrpmgm 13354 . . . . . 6  |-  ( G  e. Smgrp  ->  G  e. Mgm )
2 mulgnndir.b . . . . . . 7  |-  B  =  ( Base `  G
)
3 mulgnndir.p . . . . . . 7  |-  .+  =  ( +g  `  G )
42, 3mgmcl 13306 . . . . . 6  |-  ( ( G  e. Mgm  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  e.  B )
51, 4syl3an1 1283 . . . . 5  |-  ( ( G  e. Smgrp  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  e.  B )
653expb 1207 . . . 4  |-  ( ( G  e. Smgrp  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  e.  B
)
76adantlr 477 . . 3  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
82, 3sgrpass 13355 . . . 4  |-  ( ( G  e. Smgrp  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
98adantlr 477 . . 3  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
10 simpr2 1007 . . . . . 6  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  N  e.  NN )
11 nnuz 9719 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
1210, 11eleqtrdi 2300 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  N  e.  ( ZZ>= ` 
1 ) )
13 simpr1 1006 . . . . . 6  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  NN )
1413nnzd 9529 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  ZZ )
15 eluzadd 9712 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
1 )  /\  M  e.  ZZ )  ->  ( N  +  M )  e.  ( ZZ>= `  ( 1  +  M ) ) )
1612, 14, 15syl2anc 411 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( N  +  M
)  e.  ( ZZ>= `  ( 1  +  M
) ) )
1713nncnd 9085 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  CC )
1810nncnd 9085 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  N  e.  CC )
1917, 18addcomd 8258 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  N
)  =  ( N  +  M ) )
20 ax-1cn 8053 . . . . . 6  |-  1  e.  CC
21 addcom 8244 . . . . . 6  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( M  +  1 )  =  ( 1  +  M ) )
2217, 20, 21sylancl 413 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  1 )  =  ( 1  +  M ) )
2322fveq2d 5603 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ZZ>= `  ( M  +  1 ) )  =  ( ZZ>= `  (
1  +  M ) ) )
2416, 19, 233eltr4d 2291 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  N
)  e.  ( ZZ>= `  ( M  +  1
) ) )
2513, 11eleqtrdi 2300 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  ( ZZ>= ` 
1 ) )
26 simpr3 1008 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  X  e.  B )
2711, 26ialgrlemconst 12480 . . 3  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { X } ) `  x )  e.  B
)
287, 9, 24, 25, 27seq3split 10670 . 2  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
(  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) )  =  ( (  seq 1
(  .+  ,  ( NN  X.  { X }
) ) `  M
)  .+  (  seq ( M  +  1
) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) ) )
2913, 10nnaddcld 9119 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  N
)  e.  NN )
30 mulgnndir.t . . . 4  |-  .x.  =  (.g
`  G )
31 eqid 2207 . . . 4  |-  seq 1
(  .+  ,  ( NN  X.  { X }
) )  =  seq 1 (  .+  , 
( NN  X.  { X } ) )
322, 3, 30, 31mulgnn 13577 . . 3  |-  ( ( ( M  +  N
)  e.  NN  /\  X  e.  B )  ->  ( ( M  +  N )  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) )
3329, 26, 32syl2anc 411 . 2  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) )
342, 3, 30, 31mulgnn 13577 . . . 4  |-  ( ( M  e.  NN  /\  X  e.  B )  ->  ( M  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  M ) )
3513, 26, 34syl2anc 411 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  M ) )
36 elfznn 10211 . . . . . . 7  |-  ( x  e.  ( 1 ... N )  ->  x  e.  NN )
37 fvconst2g 5821 . . . . . . 7  |-  ( ( X  e.  B  /\  x  e.  NN )  ->  ( ( NN  X.  { X } ) `  x )  =  X )
3826, 36, 37syl2an 289 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( ( NN 
X.  { X }
) `  x )  =  X )
39 nnaddcl 9091 . . . . . . . 8  |-  ( ( x  e.  NN  /\  M  e.  NN )  ->  ( x  +  M
)  e.  NN )
4036, 13, 39syl2anr 290 . . . . . . 7  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( x  +  M )  e.  NN )
41 fvconst2g 5821 . . . . . . 7  |-  ( ( X  e.  B  /\  ( x  +  M
)  e.  NN )  ->  ( ( NN 
X.  { X }
) `  ( x  +  M ) )  =  X )
4226, 40, 41syl2an2r 595 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( ( NN 
X.  { X }
) `  ( x  +  M ) )  =  X )
4338, 42eqtr4d 2243 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( ( NN 
X.  { X }
) `  x )  =  ( ( NN 
X.  { X }
) `  ( x  +  M ) ) )
44 elnnuz 9720 . . . . . . 7  |-  ( u  e.  NN  <->  u  e.  ( ZZ>= `  1 )
)
4544biimpri 133 . . . . . 6  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  NN )
46 fvconst2g 5821 . . . . . . . 8  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  =  X )
47 simpl 109 . . . . . . . 8  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  X  e.  B )
4846, 47eqeltrd 2284 . . . . . . 7  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  B
)
4948elexd 2790 . . . . . 6  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  _V )
5026, 45, 49syl2an 289 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { X } ) `  u )  e.  _V )
51 1nn 9082 . . . . . . . . 9  |-  1  e.  NN
5251a1i 9 . . . . . . . 8  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  -> 
1  e.  NN )
5313adantr 276 . . . . . . . 8  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  ->  M  e.  NN )
5452, 53nnaddcld 9119 . . . . . . 7  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  -> 
( 1  +  M
)  e.  NN )
55 eluznn 9756 . . . . . . 7  |-  ( ( ( 1  +  M
)  e.  NN  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  ->  u  e.  NN )
5654, 55sylancom 420 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  ->  u  e.  NN )
5726, 56, 49syl2an2r 595 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  -> 
( ( NN  X.  { X } ) `  u )  e.  _V )
58 simprl 529 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  u  e.  _V )
59 plusgslid 13059 . . . . . . . . 9  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
6059slotex 12974 . . . . . . . 8  |-  ( G  e. Smgrp  ->  ( +g  `  G
)  e.  _V )
613, 60eqeltrid 2294 . . . . . . 7  |-  ( G  e. Smgrp  ->  .+  e.  _V )
6261ad2antrr 488 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  .+  e.  _V )
63 simprr 531 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  v  e.  _V )
64 ovexg 6001 . . . . . 6  |-  ( ( u  e.  _V  /\  .+  e.  _V  /\  v  e.  _V )  ->  (
u  .+  v )  e.  _V )
6558, 62, 63, 64syl3anc 1250 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  ( u  .+  v )  e.  _V )
6612, 14, 43, 50, 57, 65seq3shft2 10663 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
(  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N )  =  (  seq ( 1  +  M ) ( 
.+  ,  ( NN 
X.  { X }
) ) `  ( N  +  M )
) )
672, 3, 30, 31mulgnn 13577 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
6810, 26, 67syl2anc 411 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( N  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
6922seqeq1d 10635 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  seq ( M  +  1 ) (  .+  , 
( NN  X.  { X } ) )  =  seq ( 1  +  M ) (  .+  ,  ( NN  X.  { X } ) ) )
7069, 19fveq12d 5606 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
(  seq ( M  + 
1 ) (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) )  =  (  seq ( 1  +  M ) ( 
.+  ,  ( NN 
X.  { X }
) ) `  ( N  +  M )
) )
7166, 68, 703eqtr4d 2250 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( N  .x.  X
)  =  (  seq ( M  +  1 ) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) )
7235, 71oveq12d 5985 . 2  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  .x.  X )  .+  ( N  .x.  X ) )  =  ( (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  M )  .+  (  seq ( M  +  1 ) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) ) )
7328, 33, 723eqtr4d 2250 1  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   _Vcvv 2776   {csn 3643    X. cxp 4691   ` cfv 5290  (class class class)co 5967   CCcc 7958   1c1 7961    + caddc 7963   NNcn 9071   ZZcz 9407   ZZ>=cuz 9683   ...cfz 10165    seqcseq 10629   Basecbs 12947   +g cplusg 13024  Mgmcmgm 13301  Smgrpcsgrp 13348  .gcmg 13570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-seqfrec 10630  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-minusg 13451  df-mulg 13571
This theorem is referenced by:  mulgnn0dir  13603  mulgnnass  13608
  Copyright terms: Public domain W3C validator