ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnndir Unicode version

Theorem mulgnndir 13487
Description: Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
Hypotheses
Ref Expression
mulgnndir.b  |-  B  =  ( Base `  G
)
mulgnndir.t  |-  .x.  =  (.g
`  G )
mulgnndir.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnndir  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )

Proof of Theorem mulgnndir
Dummy variables  x  y  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrpmgm 13239 . . . . . 6  |-  ( G  e. Smgrp  ->  G  e. Mgm )
2 mulgnndir.b . . . . . . 7  |-  B  =  ( Base `  G
)
3 mulgnndir.p . . . . . . 7  |-  .+  =  ( +g  `  G )
42, 3mgmcl 13191 . . . . . 6  |-  ( ( G  e. Mgm  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  e.  B )
51, 4syl3an1 1283 . . . . 5  |-  ( ( G  e. Smgrp  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  e.  B )
653expb 1207 . . . 4  |-  ( ( G  e. Smgrp  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  e.  B
)
76adantlr 477 . . 3  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
82, 3sgrpass 13240 . . . 4  |-  ( ( G  e. Smgrp  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
98adantlr 477 . . 3  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
10 simpr2 1007 . . . . . 6  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  N  e.  NN )
11 nnuz 9684 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
1210, 11eleqtrdi 2298 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  N  e.  ( ZZ>= ` 
1 ) )
13 simpr1 1006 . . . . . 6  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  NN )
1413nnzd 9494 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  ZZ )
15 eluzadd 9677 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
1 )  /\  M  e.  ZZ )  ->  ( N  +  M )  e.  ( ZZ>= `  ( 1  +  M ) ) )
1612, 14, 15syl2anc 411 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( N  +  M
)  e.  ( ZZ>= `  ( 1  +  M
) ) )
1713nncnd 9050 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  CC )
1810nncnd 9050 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  N  e.  CC )
1917, 18addcomd 8223 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  N
)  =  ( N  +  M ) )
20 ax-1cn 8018 . . . . . 6  |-  1  e.  CC
21 addcom 8209 . . . . . 6  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( M  +  1 )  =  ( 1  +  M ) )
2217, 20, 21sylancl 413 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  1 )  =  ( 1  +  M ) )
2322fveq2d 5580 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ZZ>= `  ( M  +  1 ) )  =  ( ZZ>= `  (
1  +  M ) ) )
2416, 19, 233eltr4d 2289 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  N
)  e.  ( ZZ>= `  ( M  +  1
) ) )
2513, 11eleqtrdi 2298 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  M  e.  ( ZZ>= ` 
1 ) )
26 simpr3 1008 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  X  e.  B )
2711, 26ialgrlemconst 12365 . . 3  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { X } ) `  x )  e.  B
)
287, 9, 24, 25, 27seq3split 10633 . 2  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
(  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) )  =  ( (  seq 1
(  .+  ,  ( NN  X.  { X }
) ) `  M
)  .+  (  seq ( M  +  1
) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) ) )
2913, 10nnaddcld 9084 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  +  N
)  e.  NN )
30 mulgnndir.t . . . 4  |-  .x.  =  (.g
`  G )
31 eqid 2205 . . . 4  |-  seq 1
(  .+  ,  ( NN  X.  { X }
) )  =  seq 1 (  .+  , 
( NN  X.  { X } ) )
322, 3, 30, 31mulgnn 13462 . . 3  |-  ( ( ( M  +  N
)  e.  NN  /\  X  e.  B )  ->  ( ( M  +  N )  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) )
3329, 26, 32syl2anc 411 . 2  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) )
342, 3, 30, 31mulgnn 13462 . . . 4  |-  ( ( M  e.  NN  /\  X  e.  B )  ->  ( M  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  M ) )
3513, 26, 34syl2anc 411 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( M  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  M ) )
36 elfznn 10176 . . . . . . 7  |-  ( x  e.  ( 1 ... N )  ->  x  e.  NN )
37 fvconst2g 5798 . . . . . . 7  |-  ( ( X  e.  B  /\  x  e.  NN )  ->  ( ( NN  X.  { X } ) `  x )  =  X )
3826, 36, 37syl2an 289 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( ( NN 
X.  { X }
) `  x )  =  X )
39 nnaddcl 9056 . . . . . . . 8  |-  ( ( x  e.  NN  /\  M  e.  NN )  ->  ( x  +  M
)  e.  NN )
4036, 13, 39syl2anr 290 . . . . . . 7  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( x  +  M )  e.  NN )
41 fvconst2g 5798 . . . . . . 7  |-  ( ( X  e.  B  /\  ( x  +  M
)  e.  NN )  ->  ( ( NN 
X.  { X }
) `  ( x  +  M ) )  =  X )
4226, 40, 41syl2an2r 595 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( ( NN 
X.  { X }
) `  ( x  +  M ) )  =  X )
4338, 42eqtr4d 2241 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  x  e.  ( 1 ... N ) )  ->  ( ( NN 
X.  { X }
) `  x )  =  ( ( NN 
X.  { X }
) `  ( x  +  M ) ) )
44 elnnuz 9685 . . . . . . 7  |-  ( u  e.  NN  <->  u  e.  ( ZZ>= `  1 )
)
4544biimpri 133 . . . . . 6  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  NN )
46 fvconst2g 5798 . . . . . . . 8  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  =  X )
47 simpl 109 . . . . . . . 8  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  X  e.  B )
4846, 47eqeltrd 2282 . . . . . . 7  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  B
)
4948elexd 2785 . . . . . 6  |-  ( ( X  e.  B  /\  u  e.  NN )  ->  ( ( NN  X.  { X } ) `  u )  e.  _V )
5026, 45, 49syl2an 289 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { X } ) `  u )  e.  _V )
51 1nn 9047 . . . . . . . . 9  |-  1  e.  NN
5251a1i 9 . . . . . . . 8  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  -> 
1  e.  NN )
5313adantr 276 . . . . . . . 8  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  ->  M  e.  NN )
5452, 53nnaddcld 9084 . . . . . . 7  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  -> 
( 1  +  M
)  e.  NN )
55 eluznn 9721 . . . . . . 7  |-  ( ( ( 1  +  M
)  e.  NN  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  ->  u  e.  NN )
5654, 55sylancom 420 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  ->  u  e.  NN )
5726, 56, 49syl2an2r 595 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  u  e.  ( ZZ>= `  ( 1  +  M
) ) )  -> 
( ( NN  X.  { X } ) `  u )  e.  _V )
58 simprl 529 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  u  e.  _V )
59 plusgslid 12944 . . . . . . . . 9  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
6059slotex 12859 . . . . . . . 8  |-  ( G  e. Smgrp  ->  ( +g  `  G
)  e.  _V )
613, 60eqeltrid 2292 . . . . . . 7  |-  ( G  e. Smgrp  ->  .+  e.  _V )
6261ad2antrr 488 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  .+  e.  _V )
63 simprr 531 . . . . . 6  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  v  e.  _V )
64 ovexg 5978 . . . . . 6  |-  ( ( u  e.  _V  /\  .+  e.  _V  /\  v  e.  _V )  ->  (
u  .+  v )  e.  _V )
6558, 62, 63, 64syl3anc 1250 . . . . 5  |-  ( ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  /\  ( u  e.  _V  /\  v  e.  _V )
)  ->  ( u  .+  v )  e.  _V )
6612, 14, 43, 50, 57, 65seq3shft2 10626 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
(  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N )  =  (  seq ( 1  +  M ) ( 
.+  ,  ( NN 
X.  { X }
) ) `  ( N  +  M )
) )
672, 3, 30, 31mulgnn 13462 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
6810, 26, 67syl2anc 411 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( N  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
6922seqeq1d 10598 . . . . 5  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  seq ( M  +  1 ) (  .+  , 
( NN  X.  { X } ) )  =  seq ( 1  +  M ) (  .+  ,  ( NN  X.  { X } ) ) )
7069, 19fveq12d 5583 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
(  seq ( M  + 
1 ) (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) )  =  (  seq ( 1  +  M ) ( 
.+  ,  ( NN 
X.  { X }
) ) `  ( N  +  M )
) )
7166, 68, 703eqtr4d 2248 . . 3  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( N  .x.  X
)  =  (  seq ( M  +  1 ) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) )
7235, 71oveq12d 5962 . 2  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  .x.  X )  .+  ( N  .x.  X ) )  =  ( (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  M )  .+  (  seq ( M  +  1 ) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) ) )
7328, 33, 723eqtr4d 2248 1  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   _Vcvv 2772   {csn 3633    X. cxp 4673   ` cfv 5271  (class class class)co 5944   CCcc 7923   1c1 7926    + caddc 7928   NNcn 9036   ZZcz 9372   ZZ>=cuz 9648   ...cfz 10130    seqcseq 10592   Basecbs 12832   +g cplusg 12909  Mgmcmgm 13186  Smgrpcsgrp 13233  .gcmg 13455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-seqfrec 10593  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-minusg 13336  df-mulg 13456
This theorem is referenced by:  mulgnn0dir  13488  mulgnnass  13493
  Copyright terms: Public domain W3C validator