| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringidcl | Unicode version | ||
| Description: The unity element of a ring belongs to the base set of the ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ringidcl.b |
|
| ringidcl.u |
|
| Ref | Expression |
|---|---|
| ringidcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . . 4
| |
| 2 | 1 | ringmgp 13965 |
. . 3
|
| 3 | eqid 2229 |
. . . 4
| |
| 4 | eqid 2229 |
. . . 4
| |
| 5 | 3, 4 | mndidcl 13463 |
. . 3
|
| 6 | 2, 5 | syl 14 |
. 2
|
| 7 | ringidcl.u |
. . 3
| |
| 8 | 1, 7 | ringidvalg 13924 |
. 2
|
| 9 | ringidcl.b |
. . 3
| |
| 10 | 1, 9 | mgpbasg 13889 |
. 2
|
| 11 | 6, 8, 10 | 3eltr4d 2313 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-plusg 13123 df-mulr 13124 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-mgp 13884 df-ur 13923 df-ring 13961 |
| This theorem is referenced by: ringid 13989 ringo2times 13991 ringcom 13994 ringnegl 14014 ringnegr 14015 ringmneg1 14016 ringmneg2 14017 ringressid 14026 imasring 14027 opprring 14042 dvdsrid 14064 dvdsrneg 14067 1unit 14071 ringinvdv 14109 elrhmunit 14141 isnzr2 14148 subrgid 14187 rrgnz 14232 lmod1cl 14279 lmodvsneg 14295 lmodsubvs 14307 lmodsubdi 14308 lmodsubdir 14309 lmodprop2d 14312 rmodislmod 14315 lssvnegcl 14340 mulgrhm 14573 zrhmulg 14584 psr1clfi 14652 |
| Copyright terms: Public domain | W3C validator |