ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringidcl Unicode version

Theorem ringidcl 13983
Description: The unity element of a ring belongs to the base set of the ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ringidcl.b  |-  B  =  ( Base `  R
)
ringidcl.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
ringidcl  |-  ( R  e.  Ring  ->  .1.  e.  B )

Proof of Theorem ringidcl
StepHypRef Expression
1 eqid 2229 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
21ringmgp 13965 . . 3  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
3 eqid 2229 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
4 eqid 2229 . . . 4  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 0g
`  (mulGrp `  R )
)
53, 4mndidcl 13463 . . 3  |-  ( (mulGrp `  R )  e.  Mnd  ->  ( 0g `  (mulGrp `  R ) )  e.  ( Base `  (mulGrp `  R ) ) )
62, 5syl 14 . 2  |-  ( R  e.  Ring  ->  ( 0g
`  (mulGrp `  R )
)  e.  ( Base `  (mulGrp `  R )
) )
7 ringidcl.u . . 3  |-  .1.  =  ( 1r `  R )
81, 7ringidvalg 13924 . 2  |-  ( R  e.  Ring  ->  .1.  =  ( 0g `  (mulGrp `  R ) ) )
9 ringidcl.b . . 3  |-  B  =  ( Base `  R
)
101, 9mgpbasg 13889 . 2  |-  ( R  e.  Ring  ->  B  =  ( Base `  (mulGrp `  R ) ) )
116, 8, 103eltr4d 2313 1  |-  ( R  e.  Ring  ->  .1.  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   ` cfv 5318   Basecbs 13032   0gc0g 13289   Mndcmnd 13449  mulGrpcmgp 13883   1rcur 13922   Ringcrg 13959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-mgp 13884  df-ur 13923  df-ring 13961
This theorem is referenced by:  ringid  13989  ringo2times  13991  ringcom  13994  ringnegl  14014  ringnegr  14015  ringmneg1  14016  ringmneg2  14017  ringressid  14026  imasring  14027  opprring  14042  dvdsrid  14064  dvdsrneg  14067  1unit  14071  ringinvdv  14109  elrhmunit  14141  isnzr2  14148  subrgid  14187  rrgnz  14232  lmod1cl  14279  lmodvsneg  14295  lmodsubvs  14307  lmodsubdi  14308  lmodsubdir  14309  lmodprop2d  14312  rmodislmod  14315  lssvnegcl  14340  mulgrhm  14573  zrhmulg  14584  psr1clfi  14652
  Copyright terms: Public domain W3C validator