Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > halfpm6th | Unicode version |
Description: One half plus or minus one sixth. (Contributed by Paul Chapman, 17-Jan-2008.) |
Ref | Expression |
---|---|
halfpm6th |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 8953 | . . . . . 6 | |
2 | ax-1cn 7867 | . . . . . 6 | |
3 | 2cn 8949 | . . . . . 6 | |
4 | 3re 8952 | . . . . . . 7 | |
5 | 3pos 8972 | . . . . . . 7 | |
6 | 4, 5 | gt0ap0ii 8547 | . . . . . 6 # |
7 | 2ap0 8971 | . . . . . 6 # | |
8 | 1, 1, 2, 3, 6, 7 | divmuldivapi 8689 | . . . . 5 |
9 | 1, 6 | dividapi 8662 | . . . . . . 7 |
10 | 9 | oveq1i 5863 | . . . . . 6 |
11 | halfcn 9092 | . . . . . . 7 | |
12 | 11 | mulid2i 7923 | . . . . . 6 |
13 | 10, 12 | eqtri 2191 | . . . . 5 |
14 | 1 | mulid1i 7922 | . . . . . 6 |
15 | 3t2e6 9034 | . . . . . 6 | |
16 | 14, 15 | oveq12i 5865 | . . . . 5 |
17 | 8, 13, 16 | 3eqtr3i 2199 | . . . 4 |
18 | 17 | oveq1i 5863 | . . 3 |
19 | 6cn 8960 | . . . . 5 | |
20 | 6re 8959 | . . . . . 6 | |
21 | 6pos 8979 | . . . . . 6 | |
22 | 20, 21 | gt0ap0ii 8547 | . . . . 5 # |
23 | 19, 22 | pm3.2i 270 | . . . 4 # |
24 | divsubdirap 8625 | . . . 4 # | |
25 | 1, 2, 23, 24 | mp3an 1332 | . . 3 |
26 | 3m1e2 8998 | . . . . 5 | |
27 | 26 | oveq1i 5863 | . . . 4 |
28 | 3 | mulid2i 7923 | . . . . 5 |
29 | 28, 15 | oveq12i 5865 | . . . 4 |
30 | 3, 7 | dividapi 8662 | . . . . . 6 |
31 | 30 | oveq2i 5864 | . . . . 5 |
32 | 2, 1, 3, 3, 6, 7 | divmuldivapi 8689 | . . . . 5 |
33 | 1, 6 | recclapi 8659 | . . . . . 6 |
34 | 33 | mulid1i 7922 | . . . . 5 |
35 | 31, 32, 34 | 3eqtr3i 2199 | . . . 4 |
36 | 27, 29, 35 | 3eqtr2i 2197 | . . 3 |
37 | 18, 25, 36 | 3eqtr2i 2197 | . 2 |
38 | 1, 2, 19, 22 | divdirapi 8686 | . . . 4 |
39 | df-4 8939 | . . . . 5 | |
40 | 39 | oveq1i 5863 | . . . 4 |
41 | 17 | oveq1i 5863 | . . . 4 |
42 | 38, 40, 41 | 3eqtr4ri 2202 | . . 3 |
43 | 2t2e4 9032 | . . . 4 | |
44 | 43, 15 | oveq12i 5865 | . . 3 |
45 | 30 | oveq2i 5864 | . . . 4 |
46 | 3, 1, 3, 3, 6, 7 | divmuldivapi 8689 | . . . 4 |
47 | 3, 1, 6 | divclapi 8671 | . . . . 5 |
48 | 47 | mulid1i 7922 | . . . 4 |
49 | 45, 46, 48 | 3eqtr3i 2199 | . . 3 |
50 | 42, 44, 49 | 3eqtr2i 2197 | . 2 |
51 | 37, 50 | pm3.2i 270 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1348 wcel 2141 class class class wbr 3989 (class class class)co 5853 cc 7772 cc0 7774 c1 7775 caddc 7777 cmul 7779 cmin 8090 # cap 8500 cdiv 8589 c2 8929 c3 8930 c4 8931 c6 8933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 |
This theorem is referenced by: cos01bnd 11721 |
Copyright terms: Public domain | W3C validator |