Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > halfpm6th | Unicode version |
Description: One half plus or minus one sixth. (Contributed by Paul Chapman, 17-Jan-2008.) |
Ref | Expression |
---|---|
halfpm6th |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 8932 | . . . . . 6 | |
2 | ax-1cn 7846 | . . . . . 6 | |
3 | 2cn 8928 | . . . . . 6 | |
4 | 3re 8931 | . . . . . . 7 | |
5 | 3pos 8951 | . . . . . . 7 | |
6 | 4, 5 | gt0ap0ii 8526 | . . . . . 6 # |
7 | 2ap0 8950 | . . . . . 6 # | |
8 | 1, 1, 2, 3, 6, 7 | divmuldivapi 8668 | . . . . 5 |
9 | 1, 6 | dividapi 8641 | . . . . . . 7 |
10 | 9 | oveq1i 5852 | . . . . . 6 |
11 | halfcn 9071 | . . . . . . 7 | |
12 | 11 | mulid2i 7902 | . . . . . 6 |
13 | 10, 12 | eqtri 2186 | . . . . 5 |
14 | 1 | mulid1i 7901 | . . . . . 6 |
15 | 3t2e6 9013 | . . . . . 6 | |
16 | 14, 15 | oveq12i 5854 | . . . . 5 |
17 | 8, 13, 16 | 3eqtr3i 2194 | . . . 4 |
18 | 17 | oveq1i 5852 | . . 3 |
19 | 6cn 8939 | . . . . 5 | |
20 | 6re 8938 | . . . . . 6 | |
21 | 6pos 8958 | . . . . . 6 | |
22 | 20, 21 | gt0ap0ii 8526 | . . . . 5 # |
23 | 19, 22 | pm3.2i 270 | . . . 4 # |
24 | divsubdirap 8604 | . . . 4 # | |
25 | 1, 2, 23, 24 | mp3an 1327 | . . 3 |
26 | 3m1e2 8977 | . . . . 5 | |
27 | 26 | oveq1i 5852 | . . . 4 |
28 | 3 | mulid2i 7902 | . . . . 5 |
29 | 28, 15 | oveq12i 5854 | . . . 4 |
30 | 3, 7 | dividapi 8641 | . . . . . 6 |
31 | 30 | oveq2i 5853 | . . . . 5 |
32 | 2, 1, 3, 3, 6, 7 | divmuldivapi 8668 | . . . . 5 |
33 | 1, 6 | recclapi 8638 | . . . . . 6 |
34 | 33 | mulid1i 7901 | . . . . 5 |
35 | 31, 32, 34 | 3eqtr3i 2194 | . . . 4 |
36 | 27, 29, 35 | 3eqtr2i 2192 | . . 3 |
37 | 18, 25, 36 | 3eqtr2i 2192 | . 2 |
38 | 1, 2, 19, 22 | divdirapi 8665 | . . . 4 |
39 | df-4 8918 | . . . . 5 | |
40 | 39 | oveq1i 5852 | . . . 4 |
41 | 17 | oveq1i 5852 | . . . 4 |
42 | 38, 40, 41 | 3eqtr4ri 2197 | . . 3 |
43 | 2t2e4 9011 | . . . 4 | |
44 | 43, 15 | oveq12i 5854 | . . 3 |
45 | 30 | oveq2i 5853 | . . . 4 |
46 | 3, 1, 3, 3, 6, 7 | divmuldivapi 8668 | . . . 4 |
47 | 3, 1, 6 | divclapi 8650 | . . . . 5 |
48 | 47 | mulid1i 7901 | . . . 4 |
49 | 45, 46, 48 | 3eqtr3i 2194 | . . 3 |
50 | 42, 44, 49 | 3eqtr2i 2192 | . 2 |
51 | 37, 50 | pm3.2i 270 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wcel 2136 class class class wbr 3982 (class class class)co 5842 cc 7751 cc0 7753 c1 7754 caddc 7756 cmul 7758 cmin 8069 # cap 8479 cdiv 8568 c2 8908 c3 8909 c4 8910 c6 8912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 |
This theorem is referenced by: cos01bnd 11699 |
Copyright terms: Public domain | W3C validator |