ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  halfpm6th Unicode version

Theorem halfpm6th 9077
Description: One half plus or minus one sixth. (Contributed by Paul Chapman, 17-Jan-2008.)
Assertion
Ref Expression
halfpm6th  |-  ( ( ( 1  /  2
)  -  ( 1  /  6 ) )  =  ( 1  / 
3 )  /\  (
( 1  /  2
)  +  ( 1  /  6 ) )  =  ( 2  / 
3 ) )

Proof of Theorem halfpm6th
StepHypRef Expression
1 3cn 8932 . . . . . 6  |-  3  e.  CC
2 ax-1cn 7846 . . . . . 6  |-  1  e.  CC
3 2cn 8928 . . . . . 6  |-  2  e.  CC
4 3re 8931 . . . . . . 7  |-  3  e.  RR
5 3pos 8951 . . . . . . 7  |-  0  <  3
64, 5gt0ap0ii 8526 . . . . . 6  |-  3 #  0
7 2ap0 8950 . . . . . 6  |-  2 #  0
81, 1, 2, 3, 6, 7divmuldivapi 8668 . . . . 5  |-  ( ( 3  /  3 )  x.  ( 1  / 
2 ) )  =  ( ( 3  x.  1 )  /  (
3  x.  2 ) )
91, 6dividapi 8641 . . . . . . 7  |-  ( 3  /  3 )  =  1
109oveq1i 5852 . . . . . 6  |-  ( ( 3  /  3 )  x.  ( 1  / 
2 ) )  =  ( 1  x.  (
1  /  2 ) )
11 halfcn 9071 . . . . . . 7  |-  ( 1  /  2 )  e.  CC
1211mulid2i 7902 . . . . . 6  |-  ( 1  x.  ( 1  / 
2 ) )  =  ( 1  /  2
)
1310, 12eqtri 2186 . . . . 5  |-  ( ( 3  /  3 )  x.  ( 1  / 
2 ) )  =  ( 1  /  2
)
141mulid1i 7901 . . . . . 6  |-  ( 3  x.  1 )  =  3
15 3t2e6 9013 . . . . . 6  |-  ( 3  x.  2 )  =  6
1614, 15oveq12i 5854 . . . . 5  |-  ( ( 3  x.  1 )  /  ( 3  x.  2 ) )  =  ( 3  /  6
)
178, 13, 163eqtr3i 2194 . . . 4  |-  ( 1  /  2 )  =  ( 3  /  6
)
1817oveq1i 5852 . . 3  |-  ( ( 1  /  2 )  -  ( 1  / 
6 ) )  =  ( ( 3  / 
6 )  -  (
1  /  6 ) )
19 6cn 8939 . . . . 5  |-  6  e.  CC
20 6re 8938 . . . . . 6  |-  6  e.  RR
21 6pos 8958 . . . . . 6  |-  0  <  6
2220, 21gt0ap0ii 8526 . . . . 5  |-  6 #  0
2319, 22pm3.2i 270 . . . 4  |-  ( 6  e.  CC  /\  6 #  0 )
24 divsubdirap 8604 . . . 4  |-  ( ( 3  e.  CC  /\  1  e.  CC  /\  (
6  e.  CC  /\  6 #  0 ) )  -> 
( ( 3  -  1 )  /  6
)  =  ( ( 3  /  6 )  -  ( 1  / 
6 ) ) )
251, 2, 23, 24mp3an 1327 . . 3  |-  ( ( 3  -  1 )  /  6 )  =  ( ( 3  / 
6 )  -  (
1  /  6 ) )
26 3m1e2 8977 . . . . 5  |-  ( 3  -  1 )  =  2
2726oveq1i 5852 . . . 4  |-  ( ( 3  -  1 )  /  6 )  =  ( 2  /  6
)
283mulid2i 7902 . . . . 5  |-  ( 1  x.  2 )  =  2
2928, 15oveq12i 5854 . . . 4  |-  ( ( 1  x.  2 )  /  ( 3  x.  2 ) )  =  ( 2  /  6
)
303, 7dividapi 8641 . . . . . 6  |-  ( 2  /  2 )  =  1
3130oveq2i 5853 . . . . 5  |-  ( ( 1  /  3 )  x.  ( 2  / 
2 ) )  =  ( ( 1  / 
3 )  x.  1 )
322, 1, 3, 3, 6, 7divmuldivapi 8668 . . . . 5  |-  ( ( 1  /  3 )  x.  ( 2  / 
2 ) )  =  ( ( 1  x.  2 )  /  (
3  x.  2 ) )
331, 6recclapi 8638 . . . . . 6  |-  ( 1  /  3 )  e.  CC
3433mulid1i 7901 . . . . 5  |-  ( ( 1  /  3 )  x.  1 )  =  ( 1  /  3
)
3531, 32, 343eqtr3i 2194 . . . 4  |-  ( ( 1  x.  2 )  /  ( 3  x.  2 ) )  =  ( 1  /  3
)
3627, 29, 353eqtr2i 2192 . . 3  |-  ( ( 3  -  1 )  /  6 )  =  ( 1  /  3
)
3718, 25, 363eqtr2i 2192 . 2  |-  ( ( 1  /  2 )  -  ( 1  / 
6 ) )  =  ( 1  /  3
)
381, 2, 19, 22divdirapi 8665 . . . 4  |-  ( ( 3  +  1 )  /  6 )  =  ( ( 3  / 
6 )  +  ( 1  /  6 ) )
39 df-4 8918 . . . . 5  |-  4  =  ( 3  +  1 )
4039oveq1i 5852 . . . 4  |-  ( 4  /  6 )  =  ( ( 3  +  1 )  /  6
)
4117oveq1i 5852 . . . 4  |-  ( ( 1  /  2 )  +  ( 1  / 
6 ) )  =  ( ( 3  / 
6 )  +  ( 1  /  6 ) )
4238, 40, 413eqtr4ri 2197 . . 3  |-  ( ( 1  /  2 )  +  ( 1  / 
6 ) )  =  ( 4  /  6
)
43 2t2e4 9011 . . . 4  |-  ( 2  x.  2 )  =  4
4443, 15oveq12i 5854 . . 3  |-  ( ( 2  x.  2 )  /  ( 3  x.  2 ) )  =  ( 4  /  6
)
4530oveq2i 5853 . . . 4  |-  ( ( 2  /  3 )  x.  ( 2  / 
2 ) )  =  ( ( 2  / 
3 )  x.  1 )
463, 1, 3, 3, 6, 7divmuldivapi 8668 . . . 4  |-  ( ( 2  /  3 )  x.  ( 2  / 
2 ) )  =  ( ( 2  x.  2 )  /  (
3  x.  2 ) )
473, 1, 6divclapi 8650 . . . . 5  |-  ( 2  /  3 )  e.  CC
4847mulid1i 7901 . . . 4  |-  ( ( 2  /  3 )  x.  1 )  =  ( 2  /  3
)
4945, 46, 483eqtr3i 2194 . . 3  |-  ( ( 2  x.  2 )  /  ( 3  x.  2 ) )  =  ( 2  /  3
)
5042, 44, 493eqtr2i 2192 . 2  |-  ( ( 1  /  2 )  +  ( 1  / 
6 ) )  =  ( 2  /  3
)
5137, 50pm3.2i 270 1  |-  ( ( ( 1  /  2
)  -  ( 1  /  6 ) )  =  ( 1  / 
3 )  /\  (
( 1  /  2
)  +  ( 1  /  6 ) )  =  ( 2  / 
3 ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    - cmin 8069   # cap 8479    / cdiv 8568   2c2 8908   3c3 8909   4c4 8910   6c6 8912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920
This theorem is referenced by:  cos01bnd  11699
  Copyright terms: Public domain W3C validator