ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numaddc Unicode version

Theorem numaddc 9495
Description: Add two decimal integers  M and  N (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1  |-  T  e. 
NN0
numma.2  |-  A  e. 
NN0
numma.3  |-  B  e. 
NN0
numma.4  |-  C  e. 
NN0
numma.5  |-  D  e. 
NN0
numma.6  |-  M  =  ( ( T  x.  A )  +  B
)
numma.7  |-  N  =  ( ( T  x.  C )  +  D
)
numaddc.8  |-  F  e. 
NN0
numaddc.9  |-  ( ( A  +  C )  +  1 )  =  E
numaddc.10  |-  ( B  +  D )  =  ( ( T  x.  1 )  +  F
)
Assertion
Ref Expression
numaddc  |-  ( M  +  N )  =  ( ( T  x.  E )  +  F
)

Proof of Theorem numaddc
StepHypRef Expression
1 numma.6 . . . . . 6  |-  M  =  ( ( T  x.  A )  +  B
)
2 numma.1 . . . . . . 7  |-  T  e. 
NN0
3 numma.2 . . . . . . 7  |-  A  e. 
NN0
4 numma.3 . . . . . . 7  |-  B  e. 
NN0
52, 3, 4numcl 9460 . . . . . 6  |-  ( ( T  x.  A )  +  B )  e. 
NN0
61, 5eqeltri 2266 . . . . 5  |-  M  e. 
NN0
76nn0cni 9252 . . . 4  |-  M  e.  CC
87mulid1i 8021 . . 3  |-  ( M  x.  1 )  =  M
98oveq1i 5928 . 2  |-  ( ( M  x.  1 )  +  N )  =  ( M  +  N
)
10 numma.4 . . 3  |-  C  e. 
NN0
11 numma.5 . . 3  |-  D  e. 
NN0
12 numma.7 . . 3  |-  N  =  ( ( T  x.  C )  +  D
)
13 1nn0 9256 . . 3  |-  1  e.  NN0
14 numaddc.8 . . 3  |-  F  e. 
NN0
153nn0cni 9252 . . . . . 6  |-  A  e.  CC
1615mulid1i 8021 . . . . 5  |-  ( A  x.  1 )  =  A
1716oveq1i 5928 . . . 4  |-  ( ( A  x.  1 )  +  ( C  + 
1 ) )  =  ( A  +  ( C  +  1 ) )
1810nn0cni 9252 . . . . 5  |-  C  e.  CC
19 ax-1cn 7965 . . . . 5  |-  1  e.  CC
2015, 18, 19addassi 8027 . . . 4  |-  ( ( A  +  C )  +  1 )  =  ( A  +  ( C  +  1 ) )
21 numaddc.9 . . . 4  |-  ( ( A  +  C )  +  1 )  =  E
2217, 20, 213eqtr2i 2220 . . 3  |-  ( ( A  x.  1 )  +  ( C  + 
1 ) )  =  E
234nn0cni 9252 . . . . . 6  |-  B  e.  CC
2423mulid1i 8021 . . . . 5  |-  ( B  x.  1 )  =  B
2524oveq1i 5928 . . . 4  |-  ( ( B  x.  1 )  +  D )  =  ( B  +  D
)
26 numaddc.10 . . . 4  |-  ( B  +  D )  =  ( ( T  x.  1 )  +  F
)
2725, 26eqtri 2214 . . 3  |-  ( ( B  x.  1 )  +  D )  =  ( ( T  x.  1 )  +  F
)
282, 3, 4, 10, 11, 1, 12, 13, 14, 13, 22, 27nummac 9492 . 2  |-  ( ( M  x.  1 )  +  N )  =  ( ( T  x.  E )  +  F
)
299, 28eqtr3i 2216 1  |-  ( M  +  N )  =  ( ( T  x.  E )  +  F
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164  (class class class)co 5918   1c1 7873    + caddc 7875    x. cmul 7877   NN0cn0 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sub 8192  df-inn 8983  df-n0 9241
This theorem is referenced by:  decaddc  9502
  Copyright terms: Public domain W3C validator