![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6p5lem | Unicode version |
Description: Lemma for 6p5e11 9520 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
6p5lem.1 |
![]() ![]() ![]() ![]() |
6p5lem.2 |
![]() ![]() ![]() ![]() |
6p5lem.3 |
![]() ![]() ![]() ![]() |
6p5lem.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6p5lem.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6p5lem.6 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
6p5lem |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6p5lem.4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | oveq2i 5929 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 6p5lem.1 |
. . . 4
![]() ![]() ![]() ![]() | |
4 | 3 | nn0cni 9252 |
. . 3
![]() ![]() ![]() ![]() |
5 | 6p5lem.2 |
. . . 4
![]() ![]() ![]() ![]() | |
6 | 5 | nn0cni 9252 |
. . 3
![]() ![]() ![]() ![]() |
7 | ax-1cn 7965 |
. . 3
![]() ![]() ![]() ![]() | |
8 | 4, 6, 7 | addassi 8027 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 1nn0 9256 |
. . 3
![]() ![]() ![]() ![]() | |
10 | 6p5lem.3 |
. . 3
![]() ![]() ![]() ![]() | |
11 | 6p5lem.5 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 11 | eqcomi 2197 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 6p5lem.6 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 9, 10, 12, 13 | decsuc 9478 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 2, 8, 14 | 3eqtr2i 2220 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sub 8192 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-dec 9449 |
This theorem is referenced by: 6p5e11 9520 6p6e12 9521 7p4e11 9523 7p5e12 9524 7p6e13 9525 7p7e14 9526 8p3e11 9528 8p4e12 9529 8p5e13 9530 8p6e14 9531 8p7e15 9532 8p8e16 9533 9p2e11 9534 9p3e12 9535 9p4e13 9536 9p5e14 9537 9p6e15 9538 9p7e16 9539 9p8e17 9540 9p9e18 9541 |
Copyright terms: Public domain | W3C validator |