| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6p5lem | Unicode version | ||
| Description: Lemma for 6p5e11 9650 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6p5lem.1 |
|
| 6p5lem.2 |
|
| 6p5lem.3 |
|
| 6p5lem.4 |
|
| 6p5lem.5 |
|
| 6p5lem.6 |
|
| Ref | Expression |
|---|---|
| 6p5lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6p5lem.4 |
. . 3
| |
| 2 | 1 | oveq2i 6012 |
. 2
|
| 3 | 6p5lem.1 |
. . . 4
| |
| 4 | 3 | nn0cni 9381 |
. . 3
|
| 5 | 6p5lem.2 |
. . . 4
| |
| 6 | 5 | nn0cni 9381 |
. . 3
|
| 7 | ax-1cn 8092 |
. . 3
| |
| 8 | 4, 6, 7 | addassi 8154 |
. 2
|
| 9 | 1nn0 9385 |
. . 3
| |
| 10 | 6p5lem.3 |
. . 3
| |
| 11 | 6p5lem.5 |
. . . 4
| |
| 12 | 11 | eqcomi 2233 |
. . 3
|
| 13 | 6p5lem.6 |
. . 3
| |
| 14 | 9, 10, 12, 13 | decsuc 9608 |
. 2
|
| 15 | 2, 8, 14 | 3eqtr2i 2256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-9 9176 df-n0 9370 df-dec 9579 |
| This theorem is referenced by: 6p5e11 9650 6p6e12 9651 7p4e11 9653 7p5e12 9654 7p6e13 9655 7p7e14 9656 8p3e11 9658 8p4e12 9659 8p5e13 9660 8p6e14 9661 8p7e15 9662 8p8e16 9663 9p2e11 9664 9p3e12 9665 9p4e13 9666 9p5e14 9667 9p6e15 9668 9p7e16 9669 9p8e17 9670 9p9e18 9671 |
| Copyright terms: Public domain | W3C validator |