![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6p5lem | Unicode version |
Description: Lemma for 6p5e11 9523 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
6p5lem.1 |
![]() ![]() ![]() ![]() |
6p5lem.2 |
![]() ![]() ![]() ![]() |
6p5lem.3 |
![]() ![]() ![]() ![]() |
6p5lem.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6p5lem.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6p5lem.6 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
6p5lem |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6p5lem.4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | oveq2i 5930 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 6p5lem.1 |
. . . 4
![]() ![]() ![]() ![]() | |
4 | 3 | nn0cni 9255 |
. . 3
![]() ![]() ![]() ![]() |
5 | 6p5lem.2 |
. . . 4
![]() ![]() ![]() ![]() | |
6 | 5 | nn0cni 9255 |
. . 3
![]() ![]() ![]() ![]() |
7 | ax-1cn 7967 |
. . 3
![]() ![]() ![]() ![]() | |
8 | 4, 6, 7 | addassi 8029 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 1nn0 9259 |
. . 3
![]() ![]() ![]() ![]() | |
10 | 6p5lem.3 |
. . 3
![]() ![]() ![]() ![]() | |
11 | 6p5lem.5 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 11 | eqcomi 2197 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 6p5lem.6 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 9, 10, 12, 13 | decsuc 9481 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 2, 8, 14 | 3eqtr2i 2220 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sub 8194 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-dec 9452 |
This theorem is referenced by: 6p5e11 9523 6p6e12 9524 7p4e11 9526 7p5e12 9527 7p6e13 9528 7p7e14 9529 8p3e11 9531 8p4e12 9532 8p5e13 9533 8p6e14 9534 8p7e15 9535 8p8e16 9536 9p2e11 9537 9p3e12 9538 9p4e13 9539 9p5e14 9540 9p6e15 9541 9p7e16 9542 9p8e17 9543 9p9e18 9544 |
Copyright terms: Public domain | W3C validator |