| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6p5lem | Unicode version | ||
| Description: Lemma for 6p5e11 9576 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6p5lem.1 |
|
| 6p5lem.2 |
|
| 6p5lem.3 |
|
| 6p5lem.4 |
|
| 6p5lem.5 |
|
| 6p5lem.6 |
|
| Ref | Expression |
|---|---|
| 6p5lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6p5lem.4 |
. . 3
| |
| 2 | 1 | oveq2i 5955 |
. 2
|
| 3 | 6p5lem.1 |
. . . 4
| |
| 4 | 3 | nn0cni 9307 |
. . 3
|
| 5 | 6p5lem.2 |
. . . 4
| |
| 6 | 5 | nn0cni 9307 |
. . 3
|
| 7 | ax-1cn 8018 |
. . 3
| |
| 8 | 4, 6, 7 | addassi 8080 |
. 2
|
| 9 | 1nn0 9311 |
. . 3
| |
| 10 | 6p5lem.3 |
. . 3
| |
| 11 | 6p5lem.5 |
. . . 4
| |
| 12 | 11 | eqcomi 2209 |
. . 3
|
| 13 | 6p5lem.6 |
. . 3
| |
| 14 | 9, 10, 12, 13 | decsuc 9534 |
. 2
|
| 15 | 2, 8, 14 | 3eqtr2i 2232 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-9 9102 df-n0 9296 df-dec 9505 |
| This theorem is referenced by: 6p5e11 9576 6p6e12 9577 7p4e11 9579 7p5e12 9580 7p6e13 9581 7p7e14 9582 8p3e11 9584 8p4e12 9585 8p5e13 9586 8p6e14 9587 8p7e15 9588 8p8e16 9589 9p2e11 9590 9p3e12 9591 9p4e13 9592 9p5e14 9593 9p6e15 9594 9p7e16 9595 9p8e17 9596 9p9e18 9597 |
| Copyright terms: Public domain | W3C validator |