| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 6p5lem | Unicode version | ||
| Description: Lemma for 6p5e11 9529 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| 6p5lem.1 | 
 | 
| 6p5lem.2 | 
 | 
| 6p5lem.3 | 
 | 
| 6p5lem.4 | 
 | 
| 6p5lem.5 | 
 | 
| 6p5lem.6 | 
 | 
| Ref | Expression | 
|---|---|
| 6p5lem | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 6p5lem.4 | 
. . 3
 | |
| 2 | 1 | oveq2i 5933 | 
. 2
 | 
| 3 | 6p5lem.1 | 
. . . 4
 | |
| 4 | 3 | nn0cni 9261 | 
. . 3
 | 
| 5 | 6p5lem.2 | 
. . . 4
 | |
| 6 | 5 | nn0cni 9261 | 
. . 3
 | 
| 7 | ax-1cn 7972 | 
. . 3
 | |
| 8 | 4, 6, 7 | addassi 8034 | 
. 2
 | 
| 9 | 1nn0 9265 | 
. . 3
 | |
| 10 | 6p5lem.3 | 
. . 3
 | |
| 11 | 6p5lem.5 | 
. . . 4
 | |
| 12 | 11 | eqcomi 2200 | 
. . 3
 | 
| 13 | 6p5lem.6 | 
. . 3
 | |
| 14 | 9, 10, 12, 13 | decsuc 9487 | 
. 2
 | 
| 15 | 2, 8, 14 | 3eqtr2i 2223 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-dec 9458 | 
| This theorem is referenced by: 6p5e11 9529 6p6e12 9530 7p4e11 9532 7p5e12 9533 7p6e13 9534 7p7e14 9535 8p3e11 9537 8p4e12 9538 8p5e13 9539 8p6e14 9540 8p7e15 9541 8p8e16 9542 9p2e11 9543 9p3e12 9544 9p4e13 9545 9p5e14 9546 9p6e15 9547 9p7e16 9548 9p8e17 9549 9p9e18 9550 | 
| Copyright terms: Public domain | W3C validator |