| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6p5lem | Unicode version | ||
| Description: Lemma for 6p5e11 9546 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6p5lem.1 |
|
| 6p5lem.2 |
|
| 6p5lem.3 |
|
| 6p5lem.4 |
|
| 6p5lem.5 |
|
| 6p5lem.6 |
|
| Ref | Expression |
|---|---|
| 6p5lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6p5lem.4 |
. . 3
| |
| 2 | 1 | oveq2i 5936 |
. 2
|
| 3 | 6p5lem.1 |
. . . 4
| |
| 4 | 3 | nn0cni 9278 |
. . 3
|
| 5 | 6p5lem.2 |
. . . 4
| |
| 6 | 5 | nn0cni 9278 |
. . 3
|
| 7 | ax-1cn 7989 |
. . 3
| |
| 8 | 4, 6, 7 | addassi 8051 |
. 2
|
| 9 | 1nn0 9282 |
. . 3
| |
| 10 | 6p5lem.3 |
. . 3
| |
| 11 | 6p5lem.5 |
. . . 4
| |
| 12 | 11 | eqcomi 2200 |
. . 3
|
| 13 | 6p5lem.6 |
. . 3
| |
| 14 | 9, 10, 12, 13 | decsuc 9504 |
. 2
|
| 15 | 2, 8, 14 | 3eqtr2i 2223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-dec 9475 |
| This theorem is referenced by: 6p5e11 9546 6p6e12 9547 7p4e11 9549 7p5e12 9550 7p6e13 9551 7p7e14 9552 8p3e11 9554 8p4e12 9555 8p5e13 9556 8p6e14 9557 8p7e15 9558 8p8e16 9559 9p2e11 9560 9p3e12 9561 9p4e13 9562 9p5e14 9563 9p6e15 9564 9p7e16 9565 9p8e17 9566 9p9e18 9567 |
| Copyright terms: Public domain | W3C validator |