| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6p5lem | Unicode version | ||
| Description: Lemma for 6p5e11 9611 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6p5lem.1 |
|
| 6p5lem.2 |
|
| 6p5lem.3 |
|
| 6p5lem.4 |
|
| 6p5lem.5 |
|
| 6p5lem.6 |
|
| Ref | Expression |
|---|---|
| 6p5lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6p5lem.4 |
. . 3
| |
| 2 | 1 | oveq2i 5978 |
. 2
|
| 3 | 6p5lem.1 |
. . . 4
| |
| 4 | 3 | nn0cni 9342 |
. . 3
|
| 5 | 6p5lem.2 |
. . . 4
| |
| 6 | 5 | nn0cni 9342 |
. . 3
|
| 7 | ax-1cn 8053 |
. . 3
| |
| 8 | 4, 6, 7 | addassi 8115 |
. 2
|
| 9 | 1nn0 9346 |
. . 3
| |
| 10 | 6p5lem.3 |
. . 3
| |
| 11 | 6p5lem.5 |
. . . 4
| |
| 12 | 11 | eqcomi 2211 |
. . 3
|
| 13 | 6p5lem.6 |
. . 3
| |
| 14 | 9, 10, 12, 13 | decsuc 9569 |
. 2
|
| 15 | 2, 8, 14 | 3eqtr2i 2234 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 df-n0 9331 df-dec 9540 |
| This theorem is referenced by: 6p5e11 9611 6p6e12 9612 7p4e11 9614 7p5e12 9615 7p6e13 9616 7p7e14 9617 8p3e11 9619 8p4e12 9620 8p5e13 9621 8p6e14 9622 8p7e15 9623 8p8e16 9624 9p2e11 9625 9p3e12 9626 9p4e13 9627 9p5e14 9628 9p6e15 9629 9p7e16 9630 9p8e17 9631 9p9e18 9632 |
| Copyright terms: Public domain | W3C validator |