ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negdii Unicode version

Theorem negdii 8430
Description: Distribution of negative over addition. (Contributed by NM, 28-Jul-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Hypotheses
Ref Expression
negidi.1  |-  A  e.  CC
pncan3i.2  |-  B  e.  CC
Assertion
Ref Expression
negdii  |-  -u ( A  +  B )  =  ( -u A  +  -u B )

Proof of Theorem negdii
StepHypRef Expression
1 negidi.1 . . . . 5  |-  A  e.  CC
2 pncan3i.2 . . . . 5  |-  B  e.  CC
31, 2addcli 8150 . . . 4  |-  ( A  +  B )  e.  CC
43negidi 8415 . . 3  |-  ( ( A  +  B )  +  -u ( A  +  B ) )  =  0
51negidi 8415 . . . . 5  |-  ( A  +  -u A )  =  0
62negidi 8415 . . . . 5  |-  ( B  +  -u B )  =  0
75, 6oveq12i 6013 . . . 4  |-  ( ( A  +  -u A
)  +  ( B  +  -u B ) )  =  ( 0  +  0 )
8 00id 8287 . . . 4  |-  ( 0  +  0 )  =  0
97, 8eqtri 2250 . . 3  |-  ( ( A  +  -u A
)  +  ( B  +  -u B ) )  =  0
101negcli 8414 . . . 4  |-  -u A  e.  CC
112negcli 8414 . . . 4  |-  -u B  e.  CC
121, 10, 2, 11add4i 8311 . . 3  |-  ( ( A  +  -u A
)  +  ( B  +  -u B ) )  =  ( ( A  +  B )  +  ( -u A  +  -u B ) )
134, 9, 123eqtr2i 2256 . 2  |-  ( ( A  +  B )  +  -u ( A  +  B ) )  =  ( ( A  +  B )  +  (
-u A  +  -u B ) )
143negcli 8414 . . 3  |-  -u ( A  +  B )  e.  CC
1510, 11addcli 8150 . . 3  |-  ( -u A  +  -u B )  e.  CC
163, 14, 15addcani 8328 . 2  |-  ( ( ( A  +  B
)  +  -u ( A  +  B )
)  =  ( ( A  +  B )  +  ( -u A  +  -u B ) )  <->  -u ( A  +  B
)  =  ( -u A  +  -u B ) )
1713, 16mpbi 145 1  |-  -u ( A  +  B )  =  ( -u A  +  -u B )
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200  (class class class)co 6001   CCcc 7997   0cc0 7999    + caddc 8002   -ucneg 8318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-resscn 8091  ax-1cn 8092  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319  df-neg 8320
This theorem is referenced by:  negsubdii  8431
  Copyright terms: Public domain W3C validator