ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negdii Unicode version

Theorem negdii 8391
Description: Distribution of negative over addition. (Contributed by NM, 28-Jul-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Hypotheses
Ref Expression
negidi.1  |-  A  e.  CC
pncan3i.2  |-  B  e.  CC
Assertion
Ref Expression
negdii  |-  -u ( A  +  B )  =  ( -u A  +  -u B )

Proof of Theorem negdii
StepHypRef Expression
1 negidi.1 . . . . 5  |-  A  e.  CC
2 pncan3i.2 . . . . 5  |-  B  e.  CC
31, 2addcli 8111 . . . 4  |-  ( A  +  B )  e.  CC
43negidi 8376 . . 3  |-  ( ( A  +  B )  +  -u ( A  +  B ) )  =  0
51negidi 8376 . . . . 5  |-  ( A  +  -u A )  =  0
62negidi 8376 . . . . 5  |-  ( B  +  -u B )  =  0
75, 6oveq12i 5979 . . . 4  |-  ( ( A  +  -u A
)  +  ( B  +  -u B ) )  =  ( 0  +  0 )
8 00id 8248 . . . 4  |-  ( 0  +  0 )  =  0
97, 8eqtri 2228 . . 3  |-  ( ( A  +  -u A
)  +  ( B  +  -u B ) )  =  0
101negcli 8375 . . . 4  |-  -u A  e.  CC
112negcli 8375 . . . 4  |-  -u B  e.  CC
121, 10, 2, 11add4i 8272 . . 3  |-  ( ( A  +  -u A
)  +  ( B  +  -u B ) )  =  ( ( A  +  B )  +  ( -u A  +  -u B ) )
134, 9, 123eqtr2i 2234 . 2  |-  ( ( A  +  B )  +  -u ( A  +  B ) )  =  ( ( A  +  B )  +  (
-u A  +  -u B ) )
143negcli 8375 . . 3  |-  -u ( A  +  B )  e.  CC
1510, 11addcli 8111 . . 3  |-  ( -u A  +  -u B )  e.  CC
163, 14, 15addcani 8289 . 2  |-  ( ( ( A  +  B
)  +  -u ( A  +  B )
)  =  ( ( A  +  B )  +  ( -u A  +  -u B ) )  <->  -u ( A  +  B
)  =  ( -u A  +  -u B ) )
1713, 16mpbi 145 1  |-  -u ( A  +  B )  =  ( -u A  +  -u B )
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2178  (class class class)co 5967   CCcc 7958   0cc0 7960    + caddc 7963   -ucneg 8279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-sub 8280  df-neg 8281
This theorem is referenced by:  negsubdii  8392
  Copyright terms: Public domain W3C validator