ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-gcd Unicode version

Theorem ex-gcd 15867
Description: Example for df-gcd 12390. (Contributed by AV, 5-Sep-2021.)
Assertion
Ref Expression
ex-gcd  |-  ( -u
6  gcd  9 )  =  3

Proof of Theorem ex-gcd
StepHypRef Expression
1 6nn 9237 . . . 4  |-  6  e.  NN
21nnzi 9428 . . 3  |-  6  e.  ZZ
3 9nn 9240 . . . 4  |-  9  e.  NN
43nnzi 9428 . . 3  |-  9  e.  ZZ
5 neggcd 12419 . . 3  |-  ( ( 6  e.  ZZ  /\  9  e.  ZZ )  ->  ( -u 6  gcd  9 )  =  ( 6  gcd  9 ) )
62, 4, 5mp2an 426 . 2  |-  ( -u
6  gcd  9 )  =  ( 6  gcd  9 )
7 6cn 9153 . . . . . 6  |-  6  e.  CC
8 3cn 9146 . . . . . 6  |-  3  e.  CC
9 6p3e9 9222 . . . . . 6  |-  ( 6  +  3 )  =  9
107, 8, 9addcomli 8252 . . . . 5  |-  ( 3  +  6 )  =  9
1110eqcomi 2211 . . . 4  |-  9  =  ( 3  +  6 )
1211oveq2i 5978 . . 3  |-  ( 6  gcd  9 )  =  ( 6  gcd  (
3  +  6 ) )
13 3z 9436 . . . . . 6  |-  3  e.  ZZ
14 gcdcom 12409 . . . . . 6  |-  ( ( 6  e.  ZZ  /\  3  e.  ZZ )  ->  ( 6  gcd  3
)  =  ( 3  gcd  6 ) )
152, 13, 14mp2an 426 . . . . 5  |-  ( 6  gcd  3 )  =  ( 3  gcd  6
)
16 3p3e6 9214 . . . . . . 7  |-  ( 3  +  3 )  =  6
1716eqcomi 2211 . . . . . 6  |-  6  =  ( 3  +  3 )
1817oveq2i 5978 . . . . 5  |-  ( 3  gcd  6 )  =  ( 3  gcd  (
3  +  3 ) )
1915, 18eqtri 2228 . . . 4  |-  ( 6  gcd  3 )  =  ( 3  gcd  (
3  +  3 ) )
20 gcdadd 12421 . . . . 5  |-  ( ( 6  e.  ZZ  /\  3  e.  ZZ )  ->  ( 6  gcd  3
)  =  ( 6  gcd  ( 3  +  6 ) ) )
212, 13, 20mp2an 426 . . . 4  |-  ( 6  gcd  3 )  =  ( 6  gcd  (
3  +  6 ) )
22 gcdid 12422 . . . . . 6  |-  ( 3  e.  ZZ  ->  (
3  gcd  3 )  =  ( abs `  3
) )
2313, 22ax-mp 5 . . . . 5  |-  ( 3  gcd  3 )  =  ( abs `  3
)
24 gcdadd 12421 . . . . . 6  |-  ( ( 3  e.  ZZ  /\  3  e.  ZZ )  ->  ( 3  gcd  3
)  =  ( 3  gcd  ( 3  +  3 ) ) )
2513, 13, 24mp2an 426 . . . . 5  |-  ( 3  gcd  3 )  =  ( 3  gcd  (
3  +  3 ) )
26 3re 9145 . . . . . 6  |-  3  e.  RR
27 0re 8107 . . . . . . 7  |-  0  e.  RR
28 3pos 9165 . . . . . . 7  |-  0  <  3
2927, 26, 28ltleii 8210 . . . . . 6  |-  0  <_  3
30 absid 11497 . . . . . 6  |-  ( ( 3  e.  RR  /\  0  <_  3 )  -> 
( abs `  3
)  =  3 )
3126, 29, 30mp2an 426 . . . . 5  |-  ( abs `  3 )  =  3
3223, 25, 313eqtr3i 2236 . . . 4  |-  ( 3  gcd  ( 3  +  3 ) )  =  3
3319, 21, 323eqtr3i 2236 . . 3  |-  ( 6  gcd  ( 3  +  6 ) )  =  3
3412, 33eqtri 2228 . 2  |-  ( 6  gcd  9 )  =  3
356, 34eqtri 2228 1  |-  ( -u
6  gcd  9 )  =  3
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2178   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   RRcr 7959   0cc0 7960    + caddc 7963    <_ cle 8143   -ucneg 8279   3c3 9123   6c6 9126   9c9 9129   ZZcz 9407   abscabs 11423    gcd cgcd 12389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator