ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3p3e6 GIF version

Theorem 3p3e6 9124
Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
3p3e6 (3 + 3) = 6

Proof of Theorem 3p3e6
StepHypRef Expression
1 df-3 9042 . . . 4 3 = (2 + 1)
21oveq2i 5929 . . 3 (3 + 3) = (3 + (2 + 1))
3 3cn 9057 . . . 4 3 ∈ ℂ
4 2cn 9053 . . . 4 2 ∈ ℂ
5 ax-1cn 7965 . . . 4 1 ∈ ℂ
63, 4, 5addassi 8027 . . 3 ((3 + 2) + 1) = (3 + (2 + 1))
72, 6eqtr4i 2217 . 2 (3 + 3) = ((3 + 2) + 1)
8 df-6 9045 . . 3 6 = (5 + 1)
9 3p2e5 9123 . . . 4 (3 + 2) = 5
109oveq1i 5928 . . 3 ((3 + 2) + 1) = (5 + 1)
118, 10eqtr4i 2217 . 2 6 = ((3 + 2) + 1)
127, 11eqtr4i 2217 1 (3 + 3) = 6
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5918  1c1 7873   + caddc 7875  2c2 9033  3c3 9034  5c5 9036  6c6 9037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-addrcl 7969  ax-addass 7974
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045
This theorem is referenced by:  3t2e6  9138  binom4  15111  ex-dvds  15222  ex-gcd  15223
  Copyright terms: Public domain W3C validator