ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3p3e6 GIF version

Theorem 3p3e6 9199
Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
3p3e6 (3 + 3) = 6

Proof of Theorem 3p3e6
StepHypRef Expression
1 df-3 9116 . . . 4 3 = (2 + 1)
21oveq2i 5968 . . 3 (3 + 3) = (3 + (2 + 1))
3 3cn 9131 . . . 4 3 ∈ ℂ
4 2cn 9127 . . . 4 2 ∈ ℂ
5 ax-1cn 8038 . . . 4 1 ∈ ℂ
63, 4, 5addassi 8100 . . 3 ((3 + 2) + 1) = (3 + (2 + 1))
72, 6eqtr4i 2230 . 2 (3 + 3) = ((3 + 2) + 1)
8 df-6 9119 . . 3 6 = (5 + 1)
9 3p2e5 9198 . . . 4 (3 + 2) = 5
109oveq1i 5967 . . 3 ((3 + 2) + 1) = (5 + 1)
118, 10eqtr4i 2230 . 2 6 = ((3 + 2) + 1)
127, 11eqtr4i 2230 1 (3 + 3) = 6
Colors of variables: wff set class
Syntax hints:   = wceq 1373  (class class class)co 5957  1c1 7946   + caddc 7948  2c2 9107  3c3 9108  5c5 9110  6c6 9111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-addrcl 8042  ax-addass 8047
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-iota 5241  df-fv 5288  df-ov 5960  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119
This theorem is referenced by:  3t2e6  9213  binom4  15526  ex-dvds  15805  ex-gcd  15806
  Copyright terms: Public domain W3C validator