ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3p3e6 GIF version

Theorem 3p3e6 9178
Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
3p3e6 (3 + 3) = 6

Proof of Theorem 3p3e6
StepHypRef Expression
1 df-3 9095 . . . 4 3 = (2 + 1)
21oveq2i 5954 . . 3 (3 + 3) = (3 + (2 + 1))
3 3cn 9110 . . . 4 3 ∈ ℂ
4 2cn 9106 . . . 4 2 ∈ ℂ
5 ax-1cn 8017 . . . 4 1 ∈ ℂ
63, 4, 5addassi 8079 . . 3 ((3 + 2) + 1) = (3 + (2 + 1))
72, 6eqtr4i 2228 . 2 (3 + 3) = ((3 + 2) + 1)
8 df-6 9098 . . 3 6 = (5 + 1)
9 3p2e5 9177 . . . 4 (3 + 2) = 5
109oveq1i 5953 . . 3 ((3 + 2) + 1) = (5 + 1)
118, 10eqtr4i 2228 . 2 6 = ((3 + 2) + 1)
127, 11eqtr4i 2228 1 (3 + 3) = 6
Colors of variables: wff set class
Syntax hints:   = wceq 1372  (class class class)co 5943  1c1 7925   + caddc 7927  2c2 9086  3c3 9087  5c5 9089  6c6 9090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-addrcl 8021  ax-addass 8026
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5231  df-fv 5278  df-ov 5946  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098
This theorem is referenced by:  3t2e6  9192  binom4  15393  ex-dvds  15599  ex-gcd  15600
  Copyright terms: Public domain W3C validator