| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3p3e6 | GIF version | ||
| Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3p3e6 | ⊢ (3 + 3) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9116 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 5968 | . . 3 ⊢ (3 + 3) = (3 + (2 + 1)) |
| 3 | 3cn 9131 | . . . 4 ⊢ 3 ∈ ℂ | |
| 4 | 2cn 9127 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 8038 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 8100 | . . 3 ⊢ ((3 + 2) + 1) = (3 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2230 | . 2 ⊢ (3 + 3) = ((3 + 2) + 1) |
| 8 | df-6 9119 | . . 3 ⊢ 6 = (5 + 1) | |
| 9 | 3p2e5 9198 | . . . 4 ⊢ (3 + 2) = 5 | |
| 10 | 9 | oveq1i 5967 | . . 3 ⊢ ((3 + 2) + 1) = (5 + 1) |
| 11 | 8, 10 | eqtr4i 2230 | . 2 ⊢ 6 = ((3 + 2) + 1) |
| 12 | 7, 11 | eqtr4i 2230 | 1 ⊢ (3 + 3) = 6 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5957 1c1 7946 + caddc 7948 2c2 9107 3c3 9108 5c5 9110 6c6 9111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-addrcl 8042 ax-addass 8047 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 |
| This theorem is referenced by: 3t2e6 9213 binom4 15526 ex-dvds 15805 ex-gcd 15806 |
| Copyright terms: Public domain | W3C validator |