Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3p3e6 | GIF version |
Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
3p3e6 | ⊢ (3 + 3) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8950 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 5876 | . . 3 ⊢ (3 + 3) = (3 + (2 + 1)) |
3 | 3cn 8965 | . . . 4 ⊢ 3 ∈ ℂ | |
4 | 2cn 8961 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 7879 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 7940 | . . 3 ⊢ ((3 + 2) + 1) = (3 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2199 | . 2 ⊢ (3 + 3) = ((3 + 2) + 1) |
8 | df-6 8953 | . . 3 ⊢ 6 = (5 + 1) | |
9 | 3p2e5 9031 | . . . 4 ⊢ (3 + 2) = 5 | |
10 | 9 | oveq1i 5875 | . . 3 ⊢ ((3 + 2) + 1) = (5 + 1) |
11 | 8, 10 | eqtr4i 2199 | . 2 ⊢ 6 = ((3 + 2) + 1) |
12 | 7, 11 | eqtr4i 2199 | 1 ⊢ (3 + 3) = 6 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 (class class class)co 5865 1c1 7787 + caddc 7789 2c2 8941 3c3 8942 5c5 8944 6c6 8945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-addrcl 7883 ax-addass 7888 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 df-2 8949 df-3 8950 df-4 8951 df-5 8952 df-6 8953 |
This theorem is referenced by: 3t2e6 9046 binom4 13948 ex-dvds 14022 ex-gcd 14023 |
Copyright terms: Public domain | W3C validator |