ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ab2rexex Unicode version

Theorem ab2rexex 5916
Description: Existence of a class abstraction of existentially restricted sets. Variables  x and  y are normally free-variable parameters in the class expression substituted for  C, which can be thought of as  C ( x ,  y ). See comments for abrexex 5902. (Contributed by NM, 20-Sep-2011.)
Hypotheses
Ref Expression
ab2rexex.1  |-  A  e. 
_V
ab2rexex.2  |-  B  e. 
_V
Assertion
Ref Expression
ab2rexex  |-  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }  e.  _V
Distinct variable groups:    x, z, A   
y, z, B    z, C
Allowed substitution hints:    A( y)    B( x)    C( x, y)

Proof of Theorem ab2rexex
StepHypRef Expression
1 ab2rexex.1 . 2  |-  A  e. 
_V
2 ab2rexex.2 . . 3  |-  B  e. 
_V
32abrexex 5902 . 2  |-  { z  |  E. y  e.  B  z  =  C }  e.  _V
41, 3abrexex2 5909 1  |-  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }  e.  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1290    e. wcel 1439   {cab 2075   E.wrex 2361   _Vcvv 2620
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator