Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abrexex | Unicode version |
Description: Existence of a class abstraction of existentially restricted sets. is normally a free-variable parameter in the class expression substituted for , which can be thought of as . This simple-looking theorem is actually quite powerful and appears to involve the Axiom of Replacement in an intrinsic way, as can be seen by tracing back through the path mptexg 5710, funex 5708, fnex 5707, resfunexg 5706, and funimaexg 5272. See also abrexex2 6092. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
abrexex.1 |
Ref | Expression |
---|---|
abrexex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . 3 | |
2 | 1 | rnmpt 4852 | . 2 |
3 | abrexex.1 | . . . 4 | |
4 | 3 | mptex 5711 | . . 3 |
5 | 4 | rnex 4871 | . 2 |
6 | 2, 5 | eqeltrri 2240 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wcel 2136 cab 2151 wrex 2445 cvv 2726 cmpt 4043 crn 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: ab2rexex 6099 shftfval 10763 |
Copyright terms: Public domain | W3C validator |