ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abrexex Unicode version

Theorem abrexex 6094
Description: Existence of a class abstraction of existentially restricted sets.  x is normally a free-variable parameter in the class expression substituted for  B, which can be thought of as  B ( x ). This simple-looking theorem is actually quite powerful and appears to involve the Axiom of Replacement in an intrinsic way, as can be seen by tracing back through the path mptexg 5719, funex 5717, fnex 5716, resfunexg 5715, and funimaexg 5280. See also abrexex2 6101. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
abrexex.1  |-  A  e. 
_V
Assertion
Ref Expression
abrexex  |-  { y  |  E. x  e.  A  y  =  B }  e.  _V
Distinct variable groups:    x, y, A   
y, B
Allowed substitution hint:    B( x)

Proof of Theorem abrexex
StepHypRef Expression
1 eqid 2170 . . 3  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
21rnmpt 4857 . 2  |-  ran  (
x  e.  A  |->  B )  =  { y  |  E. x  e.  A  y  =  B }
3 abrexex.1 . . . 4  |-  A  e. 
_V
43mptex 5720 . . 3  |-  ( x  e.  A  |->  B )  e.  _V
54rnex 4876 . 2  |-  ran  (
x  e.  A  |->  B )  e.  _V
62, 5eqeltrri 2244 1  |-  { y  |  E. x  e.  A  y  =  B }  e.  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   {cab 2156   E.wrex 2449   _Vcvv 2730    |-> cmpt 4048   ran crn 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204
This theorem is referenced by:  ab2rexex  6108  shftfval  10774
  Copyright terms: Public domain W3C validator