ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abrexex Unicode version

Theorem abrexex 6085
Description: Existence of a class abstraction of existentially restricted sets.  x is normally a free-variable parameter in the class expression substituted for  B, which can be thought of as  B ( x ). This simple-looking theorem is actually quite powerful and appears to involve the Axiom of Replacement in an intrinsic way, as can be seen by tracing back through the path mptexg 5710, funex 5708, fnex 5707, resfunexg 5706, and funimaexg 5272. See also abrexex2 6092. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
abrexex.1  |-  A  e. 
_V
Assertion
Ref Expression
abrexex  |-  { y  |  E. x  e.  A  y  =  B }  e.  _V
Distinct variable groups:    x, y, A   
y, B
Allowed substitution hint:    B( x)

Proof of Theorem abrexex
StepHypRef Expression
1 eqid 2165 . . 3  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
21rnmpt 4852 . 2  |-  ran  (
x  e.  A  |->  B )  =  { y  |  E. x  e.  A  y  =  B }
3 abrexex.1 . . . 4  |-  A  e. 
_V
43mptex 5711 . . 3  |-  ( x  e.  A  |->  B )  e.  _V
54rnex 4871 . 2  |-  ran  (
x  e.  A  |->  B )  e.  _V
62, 5eqeltrri 2240 1  |-  { y  |  E. x  e.  A  y  =  B }  e.  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   {cab 2151   E.wrex 2445   _Vcvv 2726    |-> cmpt 4043   ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196
This theorem is referenced by:  ab2rexex  6099  shftfval  10763
  Copyright terms: Public domain W3C validator