ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringadd2 Unicode version

Theorem ringadd2 13659
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringadd2.b  |-  B  =  ( Base `  R
)
ringadd2.p  |-  .+  =  ( +g  `  R )
ringadd2.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
ringadd2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  E. x  e.  B  ( X  .+  X )  =  ( ( x  .+  x
)  .x.  X )
)
Distinct variable groups:    x, B    x, R    x, X    x,  .x.
Allowed substitution hint:    .+ ( x)

Proof of Theorem ringadd2
StepHypRef Expression
1 ringadd2.b . . 3  |-  B  =  ( Base `  R
)
2 ringadd2.t . . 3  |-  .x.  =  ( .r `  R )
31, 2ringid 13658 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  E. x  e.  B  ( (
x  .x.  X )  =  X  /\  ( X  .x.  x )  =  X ) )
4 oveq12 5934 . . . . . . 7  |-  ( ( ( x  .x.  X
)  =  X  /\  ( x  .x.  X )  =  X )  -> 
( ( x  .x.  X )  .+  (
x  .x.  X )
)  =  ( X 
.+  X ) )
54anidms 397 . . . . . 6  |-  ( ( x  .x.  X )  =  X  ->  (
( x  .x.  X
)  .+  ( x  .x.  X ) )  =  ( X  .+  X
) )
65eqcomd 2202 . . . . 5  |-  ( ( x  .x.  X )  =  X  ->  ( X  .+  X )  =  ( ( x  .x.  X )  .+  (
x  .x.  X )
) )
7 simpll 527 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  R  e.  Ring )
8 simpr 110 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  x  e.  B )
9 simplr 528 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  X  e.  B )
10 ringadd2.p . . . . . . . 8  |-  .+  =  ( +g  `  R )
111, 10, 2ringdir 13651 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  x  e.  B  /\  X  e.  B )
)  ->  ( (
x  .+  x )  .x.  X )  =  ( ( x  .x.  X
)  .+  ( x  .x.  X ) ) )
127, 8, 8, 9, 11syl13anc 1251 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( (
x  .+  x )  .x.  X )  =  ( ( x  .x.  X
)  .+  ( x  .x.  X ) ) )
1312eqeq2d 2208 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( ( X  .+  X )  =  ( ( x  .+  x )  .x.  X
)  <->  ( X  .+  X )  =  ( ( x  .x.  X
)  .+  ( x  .x.  X ) ) ) )
146, 13imbitrrid 156 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( (
x  .x.  X )  =  X  ->  ( X 
.+  X )  =  ( ( x  .+  x )  .x.  X
) ) )
1514adantrd 279 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( (
( x  .x.  X
)  =  X  /\  ( X  .x.  x )  =  X )  -> 
( X  .+  X
)  =  ( ( x  .+  x ) 
.x.  X ) ) )
1615reximdva 2599 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( E. x  e.  B  ( ( x  .x.  X )  =  X  /\  ( X  .x.  x )  =  X )  ->  E. x  e.  B  ( X  .+  X )  =  ( ( x  .+  x
)  .x.  X )
) )
173, 16mpd 13 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  E. x  e.  B  ( X  .+  X )  =  ( ( x  .+  x
)  .x.  X )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   E.wrex 2476   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   .rcmulr 12781   Ringcrg 13628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mgp 13553  df-ur 13592  df-ring 13630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator