ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringadd2 Unicode version

Theorem ringadd2 13789
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringadd2.b  |-  B  =  ( Base `  R
)
ringadd2.p  |-  .+  =  ( +g  `  R )
ringadd2.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
ringadd2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  E. x  e.  B  ( X  .+  X )  =  ( ( x  .+  x
)  .x.  X )
)
Distinct variable groups:    x, B    x, R    x, X    x,  .x.
Allowed substitution hint:    .+ ( x)

Proof of Theorem ringadd2
StepHypRef Expression
1 ringadd2.b . . 3  |-  B  =  ( Base `  R
)
2 ringadd2.t . . 3  |-  .x.  =  ( .r `  R )
31, 2ringid 13788 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  E. x  e.  B  ( (
x  .x.  X )  =  X  /\  ( X  .x.  x )  =  X ) )
4 oveq12 5953 . . . . . . 7  |-  ( ( ( x  .x.  X
)  =  X  /\  ( x  .x.  X )  =  X )  -> 
( ( x  .x.  X )  .+  (
x  .x.  X )
)  =  ( X 
.+  X ) )
54anidms 397 . . . . . 6  |-  ( ( x  .x.  X )  =  X  ->  (
( x  .x.  X
)  .+  ( x  .x.  X ) )  =  ( X  .+  X
) )
65eqcomd 2211 . . . . 5  |-  ( ( x  .x.  X )  =  X  ->  ( X  .+  X )  =  ( ( x  .x.  X )  .+  (
x  .x.  X )
) )
7 simpll 527 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  R  e.  Ring )
8 simpr 110 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  x  e.  B )
9 simplr 528 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  X  e.  B )
10 ringadd2.p . . . . . . . 8  |-  .+  =  ( +g  `  R )
111, 10, 2ringdir 13781 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  x  e.  B  /\  X  e.  B )
)  ->  ( (
x  .+  x )  .x.  X )  =  ( ( x  .x.  X
)  .+  ( x  .x.  X ) ) )
127, 8, 8, 9, 11syl13anc 1252 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( (
x  .+  x )  .x.  X )  =  ( ( x  .x.  X
)  .+  ( x  .x.  X ) ) )
1312eqeq2d 2217 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( ( X  .+  X )  =  ( ( x  .+  x )  .x.  X
)  <->  ( X  .+  X )  =  ( ( x  .x.  X
)  .+  ( x  .x.  X ) ) ) )
146, 13imbitrrid 156 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( (
x  .x.  X )  =  X  ->  ( X 
.+  X )  =  ( ( x  .+  x )  .x.  X
) ) )
1514adantrd 279 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( (
( x  .x.  X
)  =  X  /\  ( X  .x.  x )  =  X )  -> 
( X  .+  X
)  =  ( ( x  .+  x ) 
.x.  X ) ) )
1615reximdva 2608 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( E. x  e.  B  ( ( x  .x.  X )  =  X  /\  ( X  .x.  x )  =  X )  ->  E. x  e.  B  ( X  .+  X )  =  ( ( x  .+  x
)  .x.  X )
) )
173, 16mpd 13 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  E. x  e.  B  ( X  .+  X )  =  ( ( x  .+  x
)  .x.  X )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   E.wrex 2485   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   .rcmulr 12910   Ringcrg 13758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-mgp 13683  df-ur 13722  df-ring 13760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator