ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringadd2 Unicode version

Theorem ringadd2 13990
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringadd2.b  |-  B  =  ( Base `  R
)
ringadd2.p  |-  .+  =  ( +g  `  R )
ringadd2.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
ringadd2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  E. x  e.  B  ( X  .+  X )  =  ( ( x  .+  x
)  .x.  X )
)
Distinct variable groups:    x, B    x, R    x, X    x,  .x.
Allowed substitution hint:    .+ ( x)

Proof of Theorem ringadd2
StepHypRef Expression
1 ringadd2.b . . 3  |-  B  =  ( Base `  R
)
2 ringadd2.t . . 3  |-  .x.  =  ( .r `  R )
31, 2ringid 13989 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  E. x  e.  B  ( (
x  .x.  X )  =  X  /\  ( X  .x.  x )  =  X ) )
4 oveq12 6010 . . . . . . 7  |-  ( ( ( x  .x.  X
)  =  X  /\  ( x  .x.  X )  =  X )  -> 
( ( x  .x.  X )  .+  (
x  .x.  X )
)  =  ( X 
.+  X ) )
54anidms 397 . . . . . 6  |-  ( ( x  .x.  X )  =  X  ->  (
( x  .x.  X
)  .+  ( x  .x.  X ) )  =  ( X  .+  X
) )
65eqcomd 2235 . . . . 5  |-  ( ( x  .x.  X )  =  X  ->  ( X  .+  X )  =  ( ( x  .x.  X )  .+  (
x  .x.  X )
) )
7 simpll 527 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  R  e.  Ring )
8 simpr 110 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  x  e.  B )
9 simplr 528 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  X  e.  B )
10 ringadd2.p . . . . . . . 8  |-  .+  =  ( +g  `  R )
111, 10, 2ringdir 13982 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  x  e.  B  /\  X  e.  B )
)  ->  ( (
x  .+  x )  .x.  X )  =  ( ( x  .x.  X
)  .+  ( x  .x.  X ) ) )
127, 8, 8, 9, 11syl13anc 1273 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( (
x  .+  x )  .x.  X )  =  ( ( x  .x.  X
)  .+  ( x  .x.  X ) ) )
1312eqeq2d 2241 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( ( X  .+  X )  =  ( ( x  .+  x )  .x.  X
)  <->  ( X  .+  X )  =  ( ( x  .x.  X
)  .+  ( x  .x.  X ) ) ) )
146, 13imbitrrid 156 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( (
x  .x.  X )  =  X  ->  ( X 
.+  X )  =  ( ( x  .+  x )  .x.  X
) ) )
1514adantrd 279 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( (
( x  .x.  X
)  =  X  /\  ( X  .x.  x )  =  X )  -> 
( X  .+  X
)  =  ( ( x  .+  x ) 
.x.  X ) ) )
1615reximdva 2632 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( E. x  e.  B  ( ( x  .x.  X )  =  X  /\  ( X  .x.  x )  =  X )  ->  E. x  e.  B  ( X  .+  X )  =  ( ( x  .+  x
)  .x.  X )
) )
173, 16mpd 13 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  E. x  e.  B  ( X  .+  X )  =  ( ( x  .+  x
)  .x.  X )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   E.wrex 2509   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   .rcmulr 13111   Ringcrg 13959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-mgp 13884  df-ur 13923  df-ring 13961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator