ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringadd2 Unicode version

Theorem ringadd2 13003
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringadd2.b  |-  B  =  ( Base `  R
)
ringadd2.p  |-  .+  =  ( +g  `  R )
ringadd2.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
ringadd2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  E. x  e.  B  ( X  .+  X )  =  ( ( x  .+  x
)  .x.  X )
)
Distinct variable groups:    x, B    x, R    x, X    x,  .x.
Allowed substitution hint:    .+ ( x)

Proof of Theorem ringadd2
StepHypRef Expression
1 ringadd2.b . . 3  |-  B  =  ( Base `  R
)
2 ringadd2.t . . 3  |-  .x.  =  ( .r `  R )
31, 2ringid 13002 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  E. x  e.  B  ( (
x  .x.  X )  =  X  /\  ( X  .x.  x )  =  X ) )
4 oveq12 5874 . . . . . . 7  |-  ( ( ( x  .x.  X
)  =  X  /\  ( x  .x.  X )  =  X )  -> 
( ( x  .x.  X )  .+  (
x  .x.  X )
)  =  ( X 
.+  X ) )
54anidms 397 . . . . . 6  |-  ( ( x  .x.  X )  =  X  ->  (
( x  .x.  X
)  .+  ( x  .x.  X ) )  =  ( X  .+  X
) )
65eqcomd 2181 . . . . 5  |-  ( ( x  .x.  X )  =  X  ->  ( X  .+  X )  =  ( ( x  .x.  X )  .+  (
x  .x.  X )
) )
7 simpll 527 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  R  e.  Ring )
8 simpr 110 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  x  e.  B )
9 simplr 528 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  X  e.  B )
10 ringadd2.p . . . . . . . 8  |-  .+  =  ( +g  `  R )
111, 10, 2ringdir 12995 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  x  e.  B  /\  X  e.  B )
)  ->  ( (
x  .+  x )  .x.  X )  =  ( ( x  .x.  X
)  .+  ( x  .x.  X ) ) )
127, 8, 8, 9, 11syl13anc 1240 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( (
x  .+  x )  .x.  X )  =  ( ( x  .x.  X
)  .+  ( x  .x.  X ) ) )
1312eqeq2d 2187 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( ( X  .+  X )  =  ( ( x  .+  x )  .x.  X
)  <->  ( X  .+  X )  =  ( ( x  .x.  X
)  .+  ( x  .x.  X ) ) ) )
146, 13syl5ibr 156 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( (
x  .x.  X )  =  X  ->  ( X 
.+  X )  =  ( ( x  .+  x )  .x.  X
) ) )
1514adantrd 279 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( (
( x  .x.  X
)  =  X  /\  ( X  .x.  x )  =  X )  -> 
( X  .+  X
)  =  ( ( x  .+  x ) 
.x.  X ) ) )
1615reximdva 2577 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( E. x  e.  B  ( ( x  .x.  X )  =  X  /\  ( X  .x.  x )  =  X )  ->  E. x  e.  B  ( X  .+  X )  =  ( ( x  .+  x
)  .x.  X )
) )
173, 16mpd 13 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  E. x  e.  B  ( X  .+  X )  =  ( ( x  .+  x
)  .x.  X )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   E.wrex 2454   ` cfv 5208  (class class class)co 5865   Basecbs 12427   +g cplusg 12491   .rcmulr 12492   Ringcrg 12972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-pre-ltirr 7898  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-ltxr 7971  df-inn 8891  df-2 8949  df-3 8950  df-ndx 12430  df-slot 12431  df-base 12433  df-sets 12434  df-plusg 12504  df-mulr 12505  df-0g 12627  df-mgm 12639  df-sgrp 12672  df-mnd 12682  df-mgp 12926  df-ur 12936  df-ring 12974
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator