ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringadd2 Unicode version

Theorem ringadd2 13215
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringadd2.b  |-  B  =  ( Base `  R
)
ringadd2.p  |-  .+  =  ( +g  `  R )
ringadd2.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
ringadd2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  E. x  e.  B  ( X  .+  X )  =  ( ( x  .+  x
)  .x.  X )
)
Distinct variable groups:    x, B    x, R    x, X    x,  .x.
Allowed substitution hint:    .+ ( x)

Proof of Theorem ringadd2
StepHypRef Expression
1 ringadd2.b . . 3  |-  B  =  ( Base `  R
)
2 ringadd2.t . . 3  |-  .x.  =  ( .r `  R )
31, 2ringid 13214 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  E. x  e.  B  ( (
x  .x.  X )  =  X  /\  ( X  .x.  x )  =  X ) )
4 oveq12 5886 . . . . . . 7  |-  ( ( ( x  .x.  X
)  =  X  /\  ( x  .x.  X )  =  X )  -> 
( ( x  .x.  X )  .+  (
x  .x.  X )
)  =  ( X 
.+  X ) )
54anidms 397 . . . . . 6  |-  ( ( x  .x.  X )  =  X  ->  (
( x  .x.  X
)  .+  ( x  .x.  X ) )  =  ( X  .+  X
) )
65eqcomd 2183 . . . . 5  |-  ( ( x  .x.  X )  =  X  ->  ( X  .+  X )  =  ( ( x  .x.  X )  .+  (
x  .x.  X )
) )
7 simpll 527 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  R  e.  Ring )
8 simpr 110 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  x  e.  B )
9 simplr 528 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  X  e.  B )
10 ringadd2.p . . . . . . . 8  |-  .+  =  ( +g  `  R )
111, 10, 2ringdir 13207 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  x  e.  B  /\  X  e.  B )
)  ->  ( (
x  .+  x )  .x.  X )  =  ( ( x  .x.  X
)  .+  ( x  .x.  X ) ) )
127, 8, 8, 9, 11syl13anc 1240 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( (
x  .+  x )  .x.  X )  =  ( ( x  .x.  X
)  .+  ( x  .x.  X ) ) )
1312eqeq2d 2189 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( ( X  .+  X )  =  ( ( x  .+  x )  .x.  X
)  <->  ( X  .+  X )  =  ( ( x  .x.  X
)  .+  ( x  .x.  X ) ) ) )
146, 13imbitrrid 156 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( (
x  .x.  X )  =  X  ->  ( X 
.+  X )  =  ( ( x  .+  x )  .x.  X
) ) )
1514adantrd 279 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( (
( x  .x.  X
)  =  X  /\  ( X  .x.  x )  =  X )  -> 
( X  .+  X
)  =  ( ( x  .+  x ) 
.x.  X ) ) )
1615reximdva 2579 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( E. x  e.  B  ( ( x  .x.  X )  =  X  /\  ( X  .x.  x )  =  X )  ->  E. x  e.  B  ( X  .+  X )  =  ( ( x  .+  x
)  .x.  X )
) )
173, 16mpd 13 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  E. x  e.  B  ( X  .+  X )  =  ( ( x  .+  x
)  .x.  X )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   E.wrex 2456   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   .rcmulr 12539   Ringcrg 13184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-plusg 12551  df-mulr 12552  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-mgp 13136  df-ur 13148  df-ring 13186
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator