ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0fzelfz0 Unicode version

Theorem fz0fzelfz0 9687
Description: If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.)
Assertion
Ref Expression
fz0fzelfz0  |-  ( ( N  e.  ( 0 ... R )  /\  M  e.  ( N ... R ) )  ->  M  e.  ( 0 ... R ) )

Proof of Theorem fz0fzelfz0
StepHypRef Expression
1 elfz2nn0 9675 . . . 4  |-  ( N  e.  ( 0 ... R )  <->  ( N  e.  NN0  /\  R  e. 
NN0  /\  N  <_  R ) )
2 elfz2 9580 . . . . . 6  |-  ( M  e.  ( N ... R )  <->  ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) ) )
3 simplr 498 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  M  e.  ZZ )
4 0red 7586 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  0  e.  RR )
5 nn0re 8780 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  N  e.  RR )
65adantr 271 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  N  e.  RR )
7 zre 8852 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  ZZ  ->  M  e.  RR )
87adantl 272 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  M  e.  RR )
94, 6, 83jca 1126 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR )
)
109adantr 271 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR ) )
11 nn0ge0 8796 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  0  <_  N )
1211adantr 271 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  0  <_  N )
1312anim1i 334 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  ( 0  <_  N  /\  N  <_  M ) )
14 letr 7665 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR )  ->  (
( 0  <_  N  /\  N  <_  M )  ->  0  <_  M
) )
1510, 13, 14sylc 62 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  0  <_  M )
16 elnn0z 8861 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  <->  ( M  e.  ZZ  /\  0  <_  M ) )
173, 15, 16sylanbrc 409 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  M  e.  NN0 )
1817exp31 357 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  ( M  e.  ZZ  ->  ( N  <_  M  ->  M  e.  NN0 ) ) )
1918com23 78 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  <_  M  ->  ( M  e.  ZZ  ->  M  e.  NN0 ) ) )
20193ad2ant1 967 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  ( N  <_  M  ->  ( M  e.  ZZ  ->  M  e.  NN0 ) ) )
2120com13 80 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  ( N  <_  M  ->  (
( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  M  e.  NN0 ) ) )
2221adantrd 274 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( N  <_  M  /\  M  <_  R )  ->  ( ( N  e.  NN0  /\  R  e. 
NN0  /\  N  <_  R )  ->  M  e.  NN0 ) ) )
23223ad2ant3 969 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  ->  (
( N  <_  M  /\  M  <_  R )  ->  ( ( N  e.  NN0  /\  R  e. 
NN0  /\  N  <_  R )  ->  M  e.  NN0 ) ) )
2423imp 123 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  ->  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  M  e.  NN0 ) )
2524imp 123 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  M  e.  NN0 )
26 simpr2 953 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  R  e.  NN0 )
27 simplrr 504 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  M  <_  R
)
2825, 26, 273jca 1126 . . . . . . 7  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  ( M  e. 
NN0  /\  R  e.  NN0 
/\  M  <_  R
) )
2928ex 114 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  ->  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  ( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
302, 29sylbi 120 . . . . 5  |-  ( M  e.  ( N ... R )  ->  (
( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  -> 
( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
3130com12 30 . . . 4  |-  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  ( M  e.  ( N ... R )  ->  ( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
321, 31sylbi 120 . . 3  |-  ( N  e.  ( 0 ... R )  ->  ( M  e.  ( N ... R )  ->  ( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
3332imp 123 . 2  |-  ( ( N  e.  ( 0 ... R )  /\  M  e.  ( N ... R ) )  -> 
( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) )
34 elfz2nn0 9675 . 2  |-  ( M  e.  ( 0 ... R )  <->  ( M  e.  NN0  /\  R  e. 
NN0  /\  M  <_  R ) )
3533, 34sylibr 133 1  |-  ( ( N  e.  ( 0 ... R )  /\  M  e.  ( N ... R ) )  ->  M  e.  ( 0 ... R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 927    e. wcel 1445   class class class wbr 3867  (class class class)co 5690   RRcr 7446   0cc0 7447    <_ cle 7620   NN0cn0 8771   ZZcz 8848   ...cfz 9573
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-ltadd 7558
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-inn 8521  df-n0 8772  df-z 8849  df-uz 9119  df-fz 9574
This theorem is referenced by:  fz0fzdiffz0  9690
  Copyright terms: Public domain W3C validator