ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0fzelfz0 Unicode version

Theorem fz0fzelfz0 9935
Description: If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.)
Assertion
Ref Expression
fz0fzelfz0  |-  ( ( N  e.  ( 0 ... R )  /\  M  e.  ( N ... R ) )  ->  M  e.  ( 0 ... R ) )

Proof of Theorem fz0fzelfz0
StepHypRef Expression
1 elfz2nn0 9923 . . . 4  |-  ( N  e.  ( 0 ... R )  <->  ( N  e.  NN0  /\  R  e. 
NN0  /\  N  <_  R ) )
2 elfz2 9828 . . . . . 6  |-  ( M  e.  ( N ... R )  <->  ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) ) )
3 simplr 520 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  M  e.  ZZ )
4 0red 7791 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  0  e.  RR )
5 nn0re 9010 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  N  e.  RR )
65adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  N  e.  RR )
7 zre 9082 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  ZZ  ->  M  e.  RR )
87adantl 275 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  M  e.  RR )
94, 6, 83jca 1162 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR )
)
109adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR ) )
11 nn0ge0 9026 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  0  <_  N )
1211adantr 274 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  0  <_  N )
1312anim1i 338 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  ( 0  <_  N  /\  N  <_  M ) )
14 letr 7871 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR )  ->  (
( 0  <_  N  /\  N  <_  M )  ->  0  <_  M
) )
1510, 13, 14sylc 62 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  0  <_  M )
16 elnn0z 9091 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  <->  ( M  e.  ZZ  /\  0  <_  M ) )
173, 15, 16sylanbrc 414 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  M  e.  NN0 )
1817exp31 362 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  ( M  e.  ZZ  ->  ( N  <_  M  ->  M  e.  NN0 ) ) )
1918com23 78 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  <_  M  ->  ( M  e.  ZZ  ->  M  e.  NN0 ) ) )
20193ad2ant1 1003 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  ( N  <_  M  ->  ( M  e.  ZZ  ->  M  e.  NN0 ) ) )
2120com13 80 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  ( N  <_  M  ->  (
( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  M  e.  NN0 ) ) )
2221adantrd 277 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( N  <_  M  /\  M  <_  R )  ->  ( ( N  e.  NN0  /\  R  e. 
NN0  /\  N  <_  R )  ->  M  e.  NN0 ) ) )
23223ad2ant3 1005 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  ->  (
( N  <_  M  /\  M  <_  R )  ->  ( ( N  e.  NN0  /\  R  e. 
NN0  /\  N  <_  R )  ->  M  e.  NN0 ) ) )
2423imp 123 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  ->  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  M  e.  NN0 ) )
2524imp 123 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  M  e.  NN0 )
26 simpr2 989 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  R  e.  NN0 )
27 simplrr 526 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  M  <_  R
)
2825, 26, 273jca 1162 . . . . . . 7  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  ( M  e. 
NN0  /\  R  e.  NN0 
/\  M  <_  R
) )
2928ex 114 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  ->  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  ( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
302, 29sylbi 120 . . . . 5  |-  ( M  e.  ( N ... R )  ->  (
( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  -> 
( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
3130com12 30 . . . 4  |-  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  ( M  e.  ( N ... R )  ->  ( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
321, 31sylbi 120 . . 3  |-  ( N  e.  ( 0 ... R )  ->  ( M  e.  ( N ... R )  ->  ( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
3332imp 123 . 2  |-  ( ( N  e.  ( 0 ... R )  /\  M  e.  ( N ... R ) )  -> 
( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) )
34 elfz2nn0 9923 . 2  |-  ( M  e.  ( 0 ... R )  <->  ( M  e.  NN0  /\  R  e. 
NN0  /\  M  <_  R ) )
3533, 34sylibr 133 1  |-  ( ( N  e.  ( 0 ... R )  /\  M  e.  ( N ... R ) )  ->  M  e.  ( 0 ... R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   RRcr 7643   0cc0 7644    <_ cle 7825   NN0cn0 9001   ZZcz 9078   ...cfz 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822
This theorem is referenced by:  fz0fzdiffz0  9938
  Copyright terms: Public domain W3C validator