Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fz0fzelfz0 | Unicode version |
Description: If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.) |
Ref | Expression |
---|---|
fz0fzelfz0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2nn0 10068 | . . . 4 | |
2 | elfz2 9972 | . . . . . 6 | |
3 | simplr 525 | . . . . . . . . . . . . . . . . 17 | |
4 | 0red 7921 | . . . . . . . . . . . . . . . . . . . 20 | |
5 | nn0re 9144 | . . . . . . . . . . . . . . . . . . . . 21 | |
6 | 5 | adantr 274 | . . . . . . . . . . . . . . . . . . . 20 |
7 | zre 9216 | . . . . . . . . . . . . . . . . . . . . 21 | |
8 | 7 | adantl 275 | . . . . . . . . . . . . . . . . . . . 20 |
9 | 4, 6, 8 | 3jca 1172 | . . . . . . . . . . . . . . . . . . 19 |
10 | 9 | adantr 274 | . . . . . . . . . . . . . . . . . 18 |
11 | nn0ge0 9160 | . . . . . . . . . . . . . . . . . . . 20 | |
12 | 11 | adantr 274 | . . . . . . . . . . . . . . . . . . 19 |
13 | 12 | anim1i 338 | . . . . . . . . . . . . . . . . . 18 |
14 | letr 8002 | . . . . . . . . . . . . . . . . . 18 | |
15 | 10, 13, 14 | sylc 62 | . . . . . . . . . . . . . . . . 17 |
16 | elnn0z 9225 | . . . . . . . . . . . . . . . . 17 | |
17 | 3, 15, 16 | sylanbrc 415 | . . . . . . . . . . . . . . . 16 |
18 | 17 | exp31 362 | . . . . . . . . . . . . . . 15 |
19 | 18 | com23 78 | . . . . . . . . . . . . . 14 |
20 | 19 | 3ad2ant1 1013 | . . . . . . . . . . . . 13 |
21 | 20 | com13 80 | . . . . . . . . . . . 12 |
22 | 21 | adantrd 277 | . . . . . . . . . . 11 |
23 | 22 | 3ad2ant3 1015 | . . . . . . . . . 10 |
24 | 23 | imp 123 | . . . . . . . . 9 |
25 | 24 | imp 123 | . . . . . . . 8 |
26 | simpr2 999 | . . . . . . . 8 | |
27 | simplrr 531 | . . . . . . . 8 | |
28 | 25, 26, 27 | 3jca 1172 | . . . . . . 7 |
29 | 28 | ex 114 | . . . . . 6 |
30 | 2, 29 | sylbi 120 | . . . . 5 |
31 | 30 | com12 30 | . . . 4 |
32 | 1, 31 | sylbi 120 | . . 3 |
33 | 32 | imp 123 | . 2 |
34 | elfz2nn0 10068 | . 2 | |
35 | 33, 34 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wcel 2141 class class class wbr 3989 (class class class)co 5853 cr 7773 cc0 7774 cle 7955 cn0 9135 cz 9212 cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: fz0fzdiffz0 10086 |
Copyright terms: Public domain | W3C validator |