ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0fzelfz0 Unicode version

Theorem fz0fzelfz0 10202
Description: If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.)
Assertion
Ref Expression
fz0fzelfz0  |-  ( ( N  e.  ( 0 ... R )  /\  M  e.  ( N ... R ) )  ->  M  e.  ( 0 ... R ) )

Proof of Theorem fz0fzelfz0
StepHypRef Expression
1 elfz2nn0 10187 . . . 4  |-  ( N  e.  ( 0 ... R )  <->  ( N  e.  NN0  /\  R  e. 
NN0  /\  N  <_  R ) )
2 elfz2 10090 . . . . . 6  |-  ( M  e.  ( N ... R )  <->  ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) ) )
3 simplr 528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  M  e.  ZZ )
4 0red 8027 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  0  e.  RR )
5 nn0re 9258 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  N  e.  RR )
65adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  N  e.  RR )
7 zre 9330 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  ZZ  ->  M  e.  RR )
87adantl 277 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  M  e.  RR )
94, 6, 83jca 1179 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR )
)
109adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR ) )
11 nn0ge0 9274 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  0  <_  N )
1211adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  0  <_  N )
1312anim1i 340 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  ( 0  <_  N  /\  N  <_  M ) )
14 letr 8109 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR )  ->  (
( 0  <_  N  /\  N  <_  M )  ->  0  <_  M
) )
1510, 13, 14sylc 62 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  0  <_  M )
16 elnn0z 9339 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  <->  ( M  e.  ZZ  /\  0  <_  M ) )
173, 15, 16sylanbrc 417 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  M  e.  NN0 )
1817exp31 364 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  ( M  e.  ZZ  ->  ( N  <_  M  ->  M  e.  NN0 ) ) )
1918com23 78 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  <_  M  ->  ( M  e.  ZZ  ->  M  e.  NN0 ) ) )
20193ad2ant1 1020 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  ( N  <_  M  ->  ( M  e.  ZZ  ->  M  e.  NN0 ) ) )
2120com13 80 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  ( N  <_  M  ->  (
( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  M  e.  NN0 ) ) )
2221adantrd 279 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( N  <_  M  /\  M  <_  R )  ->  ( ( N  e.  NN0  /\  R  e. 
NN0  /\  N  <_  R )  ->  M  e.  NN0 ) ) )
23223ad2ant3 1022 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  ->  (
( N  <_  M  /\  M  <_  R )  ->  ( ( N  e.  NN0  /\  R  e. 
NN0  /\  N  <_  R )  ->  M  e.  NN0 ) ) )
2423imp 124 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  ->  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  M  e.  NN0 ) )
2524imp 124 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  M  e.  NN0 )
26 simpr2 1006 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  R  e.  NN0 )
27 simplrr 536 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  M  <_  R
)
2825, 26, 273jca 1179 . . . . . . 7  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  ( M  e. 
NN0  /\  R  e.  NN0 
/\  M  <_  R
) )
2928ex 115 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  ->  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  ( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
302, 29sylbi 121 . . . . 5  |-  ( M  e.  ( N ... R )  ->  (
( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  -> 
( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
3130com12 30 . . . 4  |-  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  ( M  e.  ( N ... R )  ->  ( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
321, 31sylbi 121 . . 3  |-  ( N  e.  ( 0 ... R )  ->  ( M  e.  ( N ... R )  ->  ( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
3332imp 124 . 2  |-  ( ( N  e.  ( 0 ... R )  /\  M  e.  ( N ... R ) )  -> 
( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) )
34 elfz2nn0 10187 . 2  |-  ( M  e.  ( 0 ... R )  <->  ( M  e.  NN0  /\  R  e. 
NN0  /\  M  <_  R ) )
3533, 34sylibr 134 1  |-  ( ( N  e.  ( 0 ... R )  /\  M  e.  ( N ... R ) )  ->  M  e.  ( 0 ... R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   RRcr 7878   0cc0 7879    <_ cle 8062   NN0cn0 9249   ZZcz 9326   ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084
This theorem is referenced by:  fz0fzdiffz0  10205
  Copyright terms: Public domain W3C validator