ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0fzelfz0 Unicode version

Theorem fz0fzelfz0 10323
Description: If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.)
Assertion
Ref Expression
fz0fzelfz0  |-  ( ( N  e.  ( 0 ... R )  /\  M  e.  ( N ... R ) )  ->  M  e.  ( 0 ... R ) )

Proof of Theorem fz0fzelfz0
StepHypRef Expression
1 elfz2nn0 10308 . . . 4  |-  ( N  e.  ( 0 ... R )  <->  ( N  e.  NN0  /\  R  e. 
NN0  /\  N  <_  R ) )
2 elfz2 10211 . . . . . 6  |-  ( M  e.  ( N ... R )  <->  ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) ) )
3 simplr 528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  M  e.  ZZ )
4 0red 8147 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  0  e.  RR )
5 nn0re 9378 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  N  e.  RR )
65adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  N  e.  RR )
7 zre 9450 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  ZZ  ->  M  e.  RR )
87adantl 277 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  M  e.  RR )
94, 6, 83jca 1201 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR )
)
109adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR ) )
11 nn0ge0 9394 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  0  <_  N )
1211adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN0  /\  M  e.  ZZ )  ->  0  <_  N )
1312anim1i 340 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  ( 0  <_  N  /\  N  <_  M ) )
14 letr 8229 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR )  ->  (
( 0  <_  N  /\  N  <_  M )  ->  0  <_  M
) )
1510, 13, 14sylc 62 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  0  <_  M )
16 elnn0z 9459 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  <->  ( M  e.  ZZ  /\  0  <_  M ) )
173, 15, 16sylanbrc 417 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  M  e.  ZZ )  /\  N  <_  M
)  ->  M  e.  NN0 )
1817exp31 364 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  ( M  e.  ZZ  ->  ( N  <_  M  ->  M  e.  NN0 ) ) )
1918com23 78 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  <_  M  ->  ( M  e.  ZZ  ->  M  e.  NN0 ) ) )
20193ad2ant1 1042 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  ( N  <_  M  ->  ( M  e.  ZZ  ->  M  e.  NN0 ) ) )
2120com13 80 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  ( N  <_  M  ->  (
( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  M  e.  NN0 ) ) )
2221adantrd 279 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( N  <_  M  /\  M  <_  R )  ->  ( ( N  e.  NN0  /\  R  e. 
NN0  /\  N  <_  R )  ->  M  e.  NN0 ) ) )
23223ad2ant3 1044 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  ->  (
( N  <_  M  /\  M  <_  R )  ->  ( ( N  e.  NN0  /\  R  e. 
NN0  /\  N  <_  R )  ->  M  e.  NN0 ) ) )
2423imp 124 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  ->  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  M  e.  NN0 ) )
2524imp 124 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  M  e.  NN0 )
26 simpr2 1028 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  R  e.  NN0 )
27 simplrr 536 . . . . . . . 8  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  M  <_  R
)
2825, 26, 273jca 1201 . . . . . . 7  |-  ( ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  /\  ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R ) )  ->  ( M  e. 
NN0  /\  R  e.  NN0 
/\  M  <_  R
) )
2928ex 115 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  R  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  <_  M  /\  M  <_  R ) )  ->  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  ( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
302, 29sylbi 121 . . . . 5  |-  ( M  e.  ( N ... R )  ->  (
( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  -> 
( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
3130com12 30 . . . 4  |-  ( ( N  e.  NN0  /\  R  e.  NN0  /\  N  <_  R )  ->  ( M  e.  ( N ... R )  ->  ( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
321, 31sylbi 121 . . 3  |-  ( N  e.  ( 0 ... R )  ->  ( M  e.  ( N ... R )  ->  ( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) ) )
3332imp 124 . 2  |-  ( ( N  e.  ( 0 ... R )  /\  M  e.  ( N ... R ) )  -> 
( M  e.  NN0  /\  R  e.  NN0  /\  M  <_  R ) )
34 elfz2nn0 10308 . 2  |-  ( M  e.  ( 0 ... R )  <->  ( M  e.  NN0  /\  R  e. 
NN0  /\  M  <_  R ) )
3533, 34sylibr 134 1  |-  ( ( N  e.  ( 0 ... R )  /\  M  e.  ( N ... R ) )  ->  M  e.  ( 0 ... R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   RRcr 7998   0cc0 7999    <_ cle 8182   NN0cn0 9369   ZZcz 9446   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by:  fz0fzdiffz0  10326
  Copyright terms: Public domain W3C validator