Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fz0fzelfz0 | Unicode version |
Description: If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.) |
Ref | Expression |
---|---|
fz0fzelfz0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2nn0 10047 | . . . 4 | |
2 | elfz2 9951 | . . . . . 6 | |
3 | simplr 520 | . . . . . . . . . . . . . . . . 17 | |
4 | 0red 7900 | . . . . . . . . . . . . . . . . . . . 20 | |
5 | nn0re 9123 | . . . . . . . . . . . . . . . . . . . . 21 | |
6 | 5 | adantr 274 | . . . . . . . . . . . . . . . . . . . 20 |
7 | zre 9195 | . . . . . . . . . . . . . . . . . . . . 21 | |
8 | 7 | adantl 275 | . . . . . . . . . . . . . . . . . . . 20 |
9 | 4, 6, 8 | 3jca 1167 | . . . . . . . . . . . . . . . . . . 19 |
10 | 9 | adantr 274 | . . . . . . . . . . . . . . . . . 18 |
11 | nn0ge0 9139 | . . . . . . . . . . . . . . . . . . . 20 | |
12 | 11 | adantr 274 | . . . . . . . . . . . . . . . . . . 19 |
13 | 12 | anim1i 338 | . . . . . . . . . . . . . . . . . 18 |
14 | letr 7981 | . . . . . . . . . . . . . . . . . 18 | |
15 | 10, 13, 14 | sylc 62 | . . . . . . . . . . . . . . . . 17 |
16 | elnn0z 9204 | . . . . . . . . . . . . . . . . 17 | |
17 | 3, 15, 16 | sylanbrc 414 | . . . . . . . . . . . . . . . 16 |
18 | 17 | exp31 362 | . . . . . . . . . . . . . . 15 |
19 | 18 | com23 78 | . . . . . . . . . . . . . 14 |
20 | 19 | 3ad2ant1 1008 | . . . . . . . . . . . . 13 |
21 | 20 | com13 80 | . . . . . . . . . . . 12 |
22 | 21 | adantrd 277 | . . . . . . . . . . 11 |
23 | 22 | 3ad2ant3 1010 | . . . . . . . . . 10 |
24 | 23 | imp 123 | . . . . . . . . 9 |
25 | 24 | imp 123 | . . . . . . . 8 |
26 | simpr2 994 | . . . . . . . 8 | |
27 | simplrr 526 | . . . . . . . 8 | |
28 | 25, 26, 27 | 3jca 1167 | . . . . . . 7 |
29 | 28 | ex 114 | . . . . . 6 |
30 | 2, 29 | sylbi 120 | . . . . 5 |
31 | 30 | com12 30 | . . . 4 |
32 | 1, 31 | sylbi 120 | . . 3 |
33 | 32 | imp 123 | . 2 |
34 | elfz2nn0 10047 | . 2 | |
35 | 33, 34 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wcel 2136 class class class wbr 3982 (class class class)co 5842 cr 7752 cc0 7753 cle 7934 cn0 9114 cz 9191 cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 |
This theorem is referenced by: fz0fzdiffz0 10065 |
Copyright terms: Public domain | W3C validator |