ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modsumfzodifsn Unicode version

Theorem modsumfzodifsn 10488
Description: The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
modsumfzodifsn  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  mod  N )  e.  ( ( 0..^ N ) 
\  { J }
) )

Proof of Theorem modsumfzodifsn
StepHypRef Expression
1 elfzoelz 10222 . . . . . . . 8  |-  ( K  e.  ( 1..^ N )  ->  K  e.  ZZ )
21adantl 277 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  e.  ZZ )
3 zq 9700 . . . . . . 7  |-  ( K  e.  ZZ  ->  K  e.  QQ )
42, 3syl 14 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  e.  QQ )
5 elfzo0 10258 . . . . . . . . . . 11  |-  ( J  e.  ( 0..^ N )  <->  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )
65biimpi 120 . . . . . . . . . 10  |-  ( J  e.  ( 0..^ N )  ->  ( J  e.  NN0  /\  N  e.  NN  /\  J  < 
N ) )
76adantr 276 . . . . . . . . 9  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( J  e.  NN0  /\  N  e.  NN  /\  J  < 
N ) )
87simp1d 1011 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  e.  NN0 )
98nn0zd 9446 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  e.  ZZ )
10 zq 9700 . . . . . . 7  |-  ( J  e.  ZZ  ->  J  e.  QQ )
119, 10syl 14 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  e.  QQ )
12 qaddcl 9709 . . . . . 6  |-  ( ( K  e.  QQ  /\  J  e.  QQ )  ->  ( K  +  J
)  e.  QQ )
134, 11, 12syl2anc 411 . . . . 5  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  e.  QQ )
1413adantr 276 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( K  +  J
)  e.  QQ )
157simp2d 1012 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  N  e.  NN )
16 nnq 9707 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  QQ )
1715, 16syl 14 . . . . 5  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  N  e.  QQ )
1817adantr 276 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  N  e.  QQ )
19 elfzo1 10266 . . . . . . . . . . 11  |-  ( K  e.  ( 1..^ N )  <->  ( K  e.  NN  /\  N  e.  NN  /\  K  < 
N ) )
2019biimpi 120 . . . . . . . . . 10  |-  ( K  e.  ( 1..^ N )  ->  ( K  e.  NN  /\  N  e.  NN  /\  K  < 
N ) )
2120adantl 277 . . . . . . . . 9  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  e.  NN  /\  N  e.  NN  /\  K  < 
N ) )
2221simp1d 1011 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  e.  NN )
2322nnnn0d 9302 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  e.  NN0 )
2423, 8nn0addcld 9306 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  e.  NN0 )
2524nn0ge0d 9305 . . . . 5  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  0  <_  ( K  +  J ) )
2625adantr 276 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  0  <_  ( K  +  J ) )
27 simpr 110 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( K  +  J
)  <  N )
28 modqid 10441 . . . 4  |-  ( ( ( ( K  +  J )  e.  QQ  /\  N  e.  QQ )  /\  ( 0  <_ 
( K  +  J
)  /\  ( K  +  J )  <  N
) )  ->  (
( K  +  J
)  mod  N )  =  ( K  +  J ) )
2914, 18, 26, 27, 28syl22anc 1250 . . 3  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  mod  N
)  =  ( K  +  J ) )
3024adantr 276 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( K  +  J
)  e.  NN0 )
3115adantr 276 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  N  e.  NN )
32 elfzo0 10258 . . . . 5  |-  ( ( K  +  J )  e.  ( 0..^ N )  <->  ( ( K  +  J )  e. 
NN0  /\  N  e.  NN  /\  ( K  +  J )  <  N
) )
3330, 31, 27, 32syl3anbrc 1183 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( K  +  J
)  e.  ( 0..^ N ) )
342zcnd 9449 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  e.  CC )
35 0cnd 8019 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  0  e.  CC )
368nn0cnd 9304 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  e.  CC )
3722nnne0d 9035 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  =/=  0 )
3834, 35, 36, 37addneintr2d 8215 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  =/=  (
0  +  J ) )
3936addlidd 8176 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( 0  +  J )  =  J )
4038, 39neeqtrd 2395 . . . . 5  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  =/=  J
)
4140adantr 276 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( K  +  J
)  =/=  J )
42 eldifsn 3749 . . . 4  |-  ( ( K  +  J )  e.  ( ( 0..^ N )  \  { J } )  <->  ( ( K  +  J )  e.  ( 0..^ N )  /\  ( K  +  J )  =/=  J
) )
4333, 41, 42sylanbrc 417 . . 3  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( K  +  J
)  e.  ( ( 0..^ N )  \  { J } ) )
4429, 43eqeltrd 2273 . 2  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  mod  N
)  e.  ( ( 0..^ N )  \  { J } ) )
4515nncnd 9004 . . . . . . . . 9  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  N  e.  CC )
4645adantr 276 . . . . . . . 8  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  N  e.  CC )
4746mulm1d 8436 . . . . . . 7  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( -u 1  x.  N )  =  -u N )
4847oveq2d 5938 . . . . . 6  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  +  (
-u 1  x.  N
) )  =  ( ( K  +  J
)  +  -u N
) )
4934, 36addcld 8046 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  e.  CC )
5049, 45negsubd 8343 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  +  -u N )  =  ( ( K  +  J )  -  N
) )
5150adantr 276 . . . . . 6  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  +  -u N )  =  ( ( K  +  J
)  -  N ) )
5248, 51eqtrd 2229 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  +  (
-u 1  x.  N
) )  =  ( ( K  +  J
)  -  N ) )
5352oveq1d 5937 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( ( K  +  J )  +  ( -u 1  x.  N ) )  mod 
N )  =  ( ( ( K  +  J )  -  N
)  mod  N )
)
5413adantr 276 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( K  +  J
)  e.  QQ )
55 neg1z 9358 . . . . . 6  |-  -u 1  e.  ZZ
5655a1i 9 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  -> 
-u 1  e.  ZZ )
5717adantr 276 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  N  e.  QQ )
5815nngt0d 9034 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  0  <  N )
5958adantr 276 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  0  <  N )
60 modqcyc 10451 . . . . 5  |-  ( ( ( ( K  +  J )  e.  QQ  /\  -u 1  e.  ZZ )  /\  ( N  e.  QQ  /\  0  < 
N ) )  -> 
( ( ( K  +  J )  +  ( -u 1  x.  N ) )  mod 
N )  =  ( ( K  +  J
)  mod  N )
)
6154, 56, 57, 59, 60syl22anc 1250 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( ( K  +  J )  +  ( -u 1  x.  N ) )  mod 
N )  =  ( ( K  +  J
)  mod  N )
)
62 qsubcl 9712 . . . . . . 7  |-  ( ( ( K  +  J
)  e.  QQ  /\  N  e.  QQ )  ->  ( ( K  +  J )  -  N
)  e.  QQ )
6313, 17, 62syl2anc 411 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  -  N )  e.  QQ )
6463adantr 276 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  e.  QQ )
65 simpr 110 . . . . . . 7  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  -.  ( K  +  J )  <  N
)
6615nnred 9003 . . . . . . . . 9  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  N  e.  RR )
6766adantr 276 . . . . . . . 8  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  N  e.  RR )
6824nn0red 9303 . . . . . . . . 9  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  e.  RR )
6968adantr 276 . . . . . . . 8  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( K  +  J
)  e.  RR )
7067, 69lenltd 8144 . . . . . . 7  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( N  <_  ( K  +  J )  <->  -.  ( K  +  J
)  <  N )
)
7165, 70mpbird 167 . . . . . 6  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  N  <_  ( K  +  J ) )
7269, 67subge0d 8562 . . . . . 6  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( 0  <_  (
( K  +  J
)  -  N )  <-> 
N  <_  ( K  +  J ) ) )
7371, 72mpbird 167 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  0  <_  ( ( K  +  J )  -  N ) )
742zred 9448 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  e.  RR )
758nn0red 9303 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  e.  RR )
7621simp3d 1013 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  <  N )
777simp3d 1013 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  <  N )
7874, 75, 66, 66, 76, 77lt2addd 8594 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  <  ( N  +  N )
)
7968, 66, 66ltsubaddd 8568 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( (
( K  +  J
)  -  N )  <  N  <->  ( K  +  J )  <  ( N  +  N )
) )
8078, 79mpbird 167 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  -  N )  <  N
)
8180adantr 276 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  <  N )
82 modqid 10441 . . . . 5  |-  ( ( ( ( ( K  +  J )  -  N )  e.  QQ  /\  N  e.  QQ )  /\  ( 0  <_ 
( ( K  +  J )  -  N
)  /\  ( ( K  +  J )  -  N )  <  N
) )  ->  (
( ( K  +  J )  -  N
)  mod  N )  =  ( ( K  +  J )  -  N ) )
8364, 57, 73, 81, 82syl22anc 1250 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( ( K  +  J )  -  N )  mod  N
)  =  ( ( K  +  J )  -  N ) )
8453, 61, 833eqtr3d 2237 . . 3  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  mod  N
)  =  ( ( K  +  J )  -  N ) )
8524nn0zd 9446 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  e.  ZZ )
8615nnzd 9447 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  N  e.  ZZ )
8785, 86zsubcld 9453 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  -  N )  e.  ZZ )
8887adantr 276 . . . . . 6  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  e.  ZZ )
89 elnn0z 9339 . . . . . 6  |-  ( ( ( K  +  J
)  -  N )  e.  NN0  <->  ( ( ( K  +  J )  -  N )  e.  ZZ  /\  0  <_ 
( ( K  +  J )  -  N
) ) )
9088, 73, 89sylanbrc 417 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  e.  NN0 )
9115adantr 276 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  N  e.  NN )
92 elfzo0 10258 . . . . 5  |-  ( ( ( K  +  J
)  -  N )  e.  ( 0..^ N )  <->  ( ( ( K  +  J )  -  N )  e. 
NN0  /\  N  e.  NN  /\  ( ( K  +  J )  -  N )  <  N
) )
9390, 91, 81, 92syl3anbrc 1183 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  e.  ( 0..^ N ) )
9434, 45subcld 8337 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  -  N )  e.  CC )
9574, 76ltned 8140 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  =/=  N )
9634, 45, 95subne0d 8346 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  -  N )  =/=  0
)
9794, 35, 36, 96addneintr2d 8215 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  -  N )  +  J )  =/=  (
0  +  J ) )
9834, 36, 45addsubd 8358 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  -  N )  =  ( ( K  -  N
)  +  J ) )
9939eqcomd 2202 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  =  ( 0  +  J
) )
10097, 98, 993netr4d 2400 . . . . 5  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  -  N )  =/=  J
)
101100adantr 276 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  =/=  J )
102 eldifsn 3749 . . . 4  |-  ( ( ( K  +  J
)  -  N )  e.  ( ( 0..^ N )  \  { J } )  <->  ( (
( K  +  J
)  -  N )  e.  ( 0..^ N )  /\  ( ( K  +  J )  -  N )  =/= 
J ) )
10393, 101, 102sylanbrc 417 . . 3  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  e.  ( ( 0..^ N )  \  { J } ) )
10484, 103eqeltrd 2273 . 2  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  mod  N
)  e.  ( ( 0..^ N )  \  { J } ) )
105 zdclt 9403 . . . 4  |-  ( ( ( K  +  J
)  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( K  +  J )  <  N )
106 exmiddc 837 . . . 4  |-  (DECID  ( K  +  J )  < 
N  ->  ( ( K  +  J )  <  N  \/  -.  ( K  +  J )  <  N ) )
107105, 106syl 14 . . 3  |-  ( ( ( K  +  J
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  +  J )  <  N  \/  -.  ( K  +  J )  <  N
) )
10885, 86, 107syl2anc 411 . 2  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  <  N  \/  -.  ( K  +  J )  <  N ) )
10944, 104, 108mpjaodan 799 1  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  mod  N )  e.  ( ( 0..^ N ) 
\  { J }
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367    \ cdif 3154   {csn 3622   class class class wbr 4033  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197   -ucneg 8198   NNcn 8990   NN0cn0 9249   ZZcz 9326   QQcq 9693  ..^cfzo 10217    mod cmo 10414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator