ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modsumfzodifsn Unicode version

Theorem modsumfzodifsn 10331
Description: The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
modsumfzodifsn  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  mod  N )  e.  ( ( 0..^ N ) 
\  { J }
) )

Proof of Theorem modsumfzodifsn
StepHypRef Expression
1 elfzoelz 10082 . . . . . . . 8  |-  ( K  e.  ( 1..^ N )  ->  K  e.  ZZ )
21adantl 275 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  e.  ZZ )
3 zq 9564 . . . . . . 7  |-  ( K  e.  ZZ  ->  K  e.  QQ )
42, 3syl 14 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  e.  QQ )
5 elfzo0 10117 . . . . . . . . . . 11  |-  ( J  e.  ( 0..^ N )  <->  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )
65biimpi 119 . . . . . . . . . 10  |-  ( J  e.  ( 0..^ N )  ->  ( J  e.  NN0  /\  N  e.  NN  /\  J  < 
N ) )
76adantr 274 . . . . . . . . 9  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( J  e.  NN0  /\  N  e.  NN  /\  J  < 
N ) )
87simp1d 999 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  e.  NN0 )
98nn0zd 9311 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  e.  ZZ )
10 zq 9564 . . . . . . 7  |-  ( J  e.  ZZ  ->  J  e.  QQ )
119, 10syl 14 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  e.  QQ )
12 qaddcl 9573 . . . . . 6  |-  ( ( K  e.  QQ  /\  J  e.  QQ )  ->  ( K  +  J
)  e.  QQ )
134, 11, 12syl2anc 409 . . . . 5  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  e.  QQ )
1413adantr 274 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( K  +  J
)  e.  QQ )
157simp2d 1000 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  N  e.  NN )
16 nnq 9571 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  QQ )
1715, 16syl 14 . . . . 5  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  N  e.  QQ )
1817adantr 274 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  N  e.  QQ )
19 elfzo1 10125 . . . . . . . . . . 11  |-  ( K  e.  ( 1..^ N )  <->  ( K  e.  NN  /\  N  e.  NN  /\  K  < 
N ) )
2019biimpi 119 . . . . . . . . . 10  |-  ( K  e.  ( 1..^ N )  ->  ( K  e.  NN  /\  N  e.  NN  /\  K  < 
N ) )
2120adantl 275 . . . . . . . . 9  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  e.  NN  /\  N  e.  NN  /\  K  < 
N ) )
2221simp1d 999 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  e.  NN )
2322nnnn0d 9167 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  e.  NN0 )
2423, 8nn0addcld 9171 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  e.  NN0 )
2524nn0ge0d 9170 . . . . 5  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  0  <_  ( K  +  J ) )
2625adantr 274 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  0  <_  ( K  +  J ) )
27 simpr 109 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( K  +  J
)  <  N )
28 modqid 10284 . . . 4  |-  ( ( ( ( K  +  J )  e.  QQ  /\  N  e.  QQ )  /\  ( 0  <_ 
( K  +  J
)  /\  ( K  +  J )  <  N
) )  ->  (
( K  +  J
)  mod  N )  =  ( K  +  J ) )
2914, 18, 26, 27, 28syl22anc 1229 . . 3  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  mod  N
)  =  ( K  +  J ) )
3024adantr 274 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( K  +  J
)  e.  NN0 )
3115adantr 274 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  N  e.  NN )
32 elfzo0 10117 . . . . 5  |-  ( ( K  +  J )  e.  ( 0..^ N )  <->  ( ( K  +  J )  e. 
NN0  /\  N  e.  NN  /\  ( K  +  J )  <  N
) )
3330, 31, 27, 32syl3anbrc 1171 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( K  +  J
)  e.  ( 0..^ N ) )
342zcnd 9314 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  e.  CC )
35 0cnd 7892 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  0  e.  CC )
368nn0cnd 9169 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  e.  CC )
3722nnne0d 8902 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  =/=  0 )
3834, 35, 36, 37addneintr2d 8087 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  =/=  (
0  +  J ) )
3936addid2d 8048 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( 0  +  J )  =  J )
4038, 39neeqtrd 2364 . . . . 5  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  =/=  J
)
4140adantr 274 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( K  +  J
)  =/=  J )
42 eldifsn 3703 . . . 4  |-  ( ( K  +  J )  e.  ( ( 0..^ N )  \  { J } )  <->  ( ( K  +  J )  e.  ( 0..^ N )  /\  ( K  +  J )  =/=  J
) )
4333, 41, 42sylanbrc 414 . . 3  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( K  +  J
)  e.  ( ( 0..^ N )  \  { J } ) )
4429, 43eqeltrd 2243 . 2  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  mod  N
)  e.  ( ( 0..^ N )  \  { J } ) )
4515nncnd 8871 . . . . . . . . 9  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  N  e.  CC )
4645adantr 274 . . . . . . . 8  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  N  e.  CC )
4746mulm1d 8308 . . . . . . 7  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( -u 1  x.  N )  =  -u N )
4847oveq2d 5858 . . . . . 6  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  +  (
-u 1  x.  N
) )  =  ( ( K  +  J
)  +  -u N
) )
4934, 36addcld 7918 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  e.  CC )
5049, 45negsubd 8215 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  +  -u N )  =  ( ( K  +  J )  -  N
) )
5150adantr 274 . . . . . 6  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  +  -u N )  =  ( ( K  +  J
)  -  N ) )
5248, 51eqtrd 2198 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  +  (
-u 1  x.  N
) )  =  ( ( K  +  J
)  -  N ) )
5352oveq1d 5857 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( ( K  +  J )  +  ( -u 1  x.  N ) )  mod 
N )  =  ( ( ( K  +  J )  -  N
)  mod  N )
)
5413adantr 274 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( K  +  J
)  e.  QQ )
55 neg1z 9223 . . . . . 6  |-  -u 1  e.  ZZ
5655a1i 9 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  -> 
-u 1  e.  ZZ )
5717adantr 274 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  N  e.  QQ )
5815nngt0d 8901 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  0  <  N )
5958adantr 274 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  0  <  N )
60 modqcyc 10294 . . . . 5  |-  ( ( ( ( K  +  J )  e.  QQ  /\  -u 1  e.  ZZ )  /\  ( N  e.  QQ  /\  0  < 
N ) )  -> 
( ( ( K  +  J )  +  ( -u 1  x.  N ) )  mod 
N )  =  ( ( K  +  J
)  mod  N )
)
6154, 56, 57, 59, 60syl22anc 1229 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( ( K  +  J )  +  ( -u 1  x.  N ) )  mod 
N )  =  ( ( K  +  J
)  mod  N )
)
62 qsubcl 9576 . . . . . . 7  |-  ( ( ( K  +  J
)  e.  QQ  /\  N  e.  QQ )  ->  ( ( K  +  J )  -  N
)  e.  QQ )
6313, 17, 62syl2anc 409 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  -  N )  e.  QQ )
6463adantr 274 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  e.  QQ )
65 simpr 109 . . . . . . 7  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  -.  ( K  +  J )  <  N
)
6615nnred 8870 . . . . . . . . 9  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  N  e.  RR )
6766adantr 274 . . . . . . . 8  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  N  e.  RR )
6824nn0red 9168 . . . . . . . . 9  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  e.  RR )
6968adantr 274 . . . . . . . 8  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( K  +  J
)  e.  RR )
7067, 69lenltd 8016 . . . . . . 7  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( N  <_  ( K  +  J )  <->  -.  ( K  +  J
)  <  N )
)
7165, 70mpbird 166 . . . . . 6  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  N  <_  ( K  +  J ) )
7269, 67subge0d 8433 . . . . . 6  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( 0  <_  (
( K  +  J
)  -  N )  <-> 
N  <_  ( K  +  J ) ) )
7371, 72mpbird 166 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  0  <_  ( ( K  +  J )  -  N ) )
742zred 9313 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  e.  RR )
758nn0red 9168 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  e.  RR )
7621simp3d 1001 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  <  N )
777simp3d 1001 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  <  N )
7874, 75, 66, 66, 76, 77lt2addd 8465 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  <  ( N  +  N )
)
7968, 66, 66ltsubaddd 8439 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( (
( K  +  J
)  -  N )  <  N  <->  ( K  +  J )  <  ( N  +  N )
) )
8078, 79mpbird 166 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  -  N )  <  N
)
8180adantr 274 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  <  N )
82 modqid 10284 . . . . 5  |-  ( ( ( ( ( K  +  J )  -  N )  e.  QQ  /\  N  e.  QQ )  /\  ( 0  <_ 
( ( K  +  J )  -  N
)  /\  ( ( K  +  J )  -  N )  <  N
) )  ->  (
( ( K  +  J )  -  N
)  mod  N )  =  ( ( K  +  J )  -  N ) )
8364, 57, 73, 81, 82syl22anc 1229 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( ( K  +  J )  -  N )  mod  N
)  =  ( ( K  +  J )  -  N ) )
8453, 61, 833eqtr3d 2206 . . 3  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  mod  N
)  =  ( ( K  +  J )  -  N ) )
8524nn0zd 9311 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  e.  ZZ )
8615nnzd 9312 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  N  e.  ZZ )
8785, 86zsubcld 9318 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  -  N )  e.  ZZ )
8887adantr 274 . . . . . 6  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  e.  ZZ )
89 elnn0z 9204 . . . . . 6  |-  ( ( ( K  +  J
)  -  N )  e.  NN0  <->  ( ( ( K  +  J )  -  N )  e.  ZZ  /\  0  <_ 
( ( K  +  J )  -  N
) ) )
9088, 73, 89sylanbrc 414 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  e.  NN0 )
9115adantr 274 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  N  e.  NN )
92 elfzo0 10117 . . . . 5  |-  ( ( ( K  +  J
)  -  N )  e.  ( 0..^ N )  <->  ( ( ( K  +  J )  -  N )  e. 
NN0  /\  N  e.  NN  /\  ( ( K  +  J )  -  N )  <  N
) )
9390, 91, 81, 92syl3anbrc 1171 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  e.  ( 0..^ N ) )
9434, 45subcld 8209 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  -  N )  e.  CC )
9574, 76ltned 8012 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  =/=  N )
9634, 45, 95subne0d 8218 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  -  N )  =/=  0
)
9794, 35, 36, 96addneintr2d 8087 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  -  N )  +  J )  =/=  (
0  +  J ) )
9834, 36, 45addsubd 8230 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  -  N )  =  ( ( K  -  N
)  +  J ) )
9939eqcomd 2171 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  =  ( 0  +  J
) )
10097, 98, 993netr4d 2369 . . . . 5  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  -  N )  =/=  J
)
101100adantr 274 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  =/=  J )
102 eldifsn 3703 . . . 4  |-  ( ( ( K  +  J
)  -  N )  e.  ( ( 0..^ N )  \  { J } )  <->  ( (
( K  +  J
)  -  N )  e.  ( 0..^ N )  /\  ( ( K  +  J )  -  N )  =/= 
J ) )
10393, 101, 102sylanbrc 414 . . 3  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  e.  ( ( 0..^ N )  \  { J } ) )
10484, 103eqeltrd 2243 . 2  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  mod  N
)  e.  ( ( 0..^ N )  \  { J } ) )
105 zdclt 9268 . . . 4  |-  ( ( ( K  +  J
)  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( K  +  J )  <  N )
106 exmiddc 826 . . . 4  |-  (DECID  ( K  +  J )  < 
N  ->  ( ( K  +  J )  <  N  \/  -.  ( K  +  J )  <  N ) )
107105, 106syl 14 . . 3  |-  ( ( ( K  +  J
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  +  J )  <  N  \/  -.  ( K  +  J )  <  N
) )
10885, 86, 107syl2anc 409 . 2  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  <  N  \/  -.  ( K  +  J )  <  N ) )
10944, 104, 108mpjaodan 788 1  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  mod  N )  e.  ( ( 0..^ N ) 
\  { J }
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336    \ cdif 3113   {csn 3576   class class class wbr 3982  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    < clt 7933    <_ cle 7934    - cmin 8069   -ucneg 8070   NNcn 8857   NN0cn0 9114   ZZcz 9191   QQcq 9557  ..^cfzo 10077    mod cmo 10257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator