ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modsumfzodifsn Unicode version

Theorem modsumfzodifsn 10062
Description: The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
modsumfzodifsn  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  mod  N )  e.  ( ( 0..^ N ) 
\  { J }
) )

Proof of Theorem modsumfzodifsn
StepHypRef Expression
1 elfzoelz 9817 . . . . . . . 8  |-  ( K  e.  ( 1..^ N )  ->  K  e.  ZZ )
21adantl 273 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  e.  ZZ )
3 zq 9320 . . . . . . 7  |-  ( K  e.  ZZ  ->  K  e.  QQ )
42, 3syl 14 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  e.  QQ )
5 elfzo0 9852 . . . . . . . . . . 11  |-  ( J  e.  ( 0..^ N )  <->  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )
65biimpi 119 . . . . . . . . . 10  |-  ( J  e.  ( 0..^ N )  ->  ( J  e.  NN0  /\  N  e.  NN  /\  J  < 
N ) )
76adantr 272 . . . . . . . . 9  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( J  e.  NN0  /\  N  e.  NN  /\  J  < 
N ) )
87simp1d 976 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  e.  NN0 )
98nn0zd 9075 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  e.  ZZ )
10 zq 9320 . . . . . . 7  |-  ( J  e.  ZZ  ->  J  e.  QQ )
119, 10syl 14 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  e.  QQ )
12 qaddcl 9329 . . . . . 6  |-  ( ( K  e.  QQ  /\  J  e.  QQ )  ->  ( K  +  J
)  e.  QQ )
134, 11, 12syl2anc 406 . . . . 5  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  e.  QQ )
1413adantr 272 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( K  +  J
)  e.  QQ )
157simp2d 977 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  N  e.  NN )
16 nnq 9327 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  QQ )
1715, 16syl 14 . . . . 5  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  N  e.  QQ )
1817adantr 272 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  N  e.  QQ )
19 elfzo1 9860 . . . . . . . . . . 11  |-  ( K  e.  ( 1..^ N )  <->  ( K  e.  NN  /\  N  e.  NN  /\  K  < 
N ) )
2019biimpi 119 . . . . . . . . . 10  |-  ( K  e.  ( 1..^ N )  ->  ( K  e.  NN  /\  N  e.  NN  /\  K  < 
N ) )
2120adantl 273 . . . . . . . . 9  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  e.  NN  /\  N  e.  NN  /\  K  < 
N ) )
2221simp1d 976 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  e.  NN )
2322nnnn0d 8934 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  e.  NN0 )
2423, 8nn0addcld 8938 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  e.  NN0 )
2524nn0ge0d 8937 . . . . 5  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  0  <_  ( K  +  J ) )
2625adantr 272 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  0  <_  ( K  +  J ) )
27 simpr 109 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( K  +  J
)  <  N )
28 modqid 10015 . . . 4  |-  ( ( ( ( K  +  J )  e.  QQ  /\  N  e.  QQ )  /\  ( 0  <_ 
( K  +  J
)  /\  ( K  +  J )  <  N
) )  ->  (
( K  +  J
)  mod  N )  =  ( K  +  J ) )
2914, 18, 26, 27, 28syl22anc 1200 . . 3  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  mod  N
)  =  ( K  +  J ) )
3024adantr 272 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( K  +  J
)  e.  NN0 )
3115adantr 272 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  N  e.  NN )
32 elfzo0 9852 . . . . 5  |-  ( ( K  +  J )  e.  ( 0..^ N )  <->  ( ( K  +  J )  e. 
NN0  /\  N  e.  NN  /\  ( K  +  J )  <  N
) )
3330, 31, 27, 32syl3anbrc 1148 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( K  +  J
)  e.  ( 0..^ N ) )
342zcnd 9078 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  e.  CC )
35 0cnd 7683 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  0  e.  CC )
368nn0cnd 8936 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  e.  CC )
3722nnne0d 8675 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  =/=  0 )
3834, 35, 36, 37addneintr2d 7874 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  =/=  (
0  +  J ) )
3936addid2d 7835 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( 0  +  J )  =  J )
4038, 39neeqtrd 2310 . . . . 5  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  =/=  J
)
4140adantr 272 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( K  +  J
)  =/=  J )
42 eldifsn 3616 . . . 4  |-  ( ( K  +  J )  e.  ( ( 0..^ N )  \  { J } )  <->  ( ( K  +  J )  e.  ( 0..^ N )  /\  ( K  +  J )  =/=  J
) )
4333, 41, 42sylanbrc 411 . . 3  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( K  +  J
)  e.  ( ( 0..^ N )  \  { J } ) )
4429, 43eqeltrd 2191 . 2  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  mod  N
)  e.  ( ( 0..^ N )  \  { J } ) )
4515nncnd 8644 . . . . . . . . 9  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  N  e.  CC )
4645adantr 272 . . . . . . . 8  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  N  e.  CC )
4746mulm1d 8091 . . . . . . 7  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( -u 1  x.  N )  =  -u N )
4847oveq2d 5744 . . . . . 6  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  +  (
-u 1  x.  N
) )  =  ( ( K  +  J
)  +  -u N
) )
4934, 36addcld 7709 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  e.  CC )
5049, 45negsubd 8002 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  +  -u N )  =  ( ( K  +  J )  -  N
) )
5150adantr 272 . . . . . 6  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  +  -u N )  =  ( ( K  +  J
)  -  N ) )
5248, 51eqtrd 2147 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  +  (
-u 1  x.  N
) )  =  ( ( K  +  J
)  -  N ) )
5352oveq1d 5743 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( ( K  +  J )  +  ( -u 1  x.  N ) )  mod 
N )  =  ( ( ( K  +  J )  -  N
)  mod  N )
)
5413adantr 272 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( K  +  J
)  e.  QQ )
55 neg1z 8990 . . . . . 6  |-  -u 1  e.  ZZ
5655a1i 9 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  -> 
-u 1  e.  ZZ )
5717adantr 272 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  N  e.  QQ )
5815nngt0d 8674 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  0  <  N )
5958adantr 272 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  0  <  N )
60 modqcyc 10025 . . . . 5  |-  ( ( ( ( K  +  J )  e.  QQ  /\  -u 1  e.  ZZ )  /\  ( N  e.  QQ  /\  0  < 
N ) )  -> 
( ( ( K  +  J )  +  ( -u 1  x.  N ) )  mod 
N )  =  ( ( K  +  J
)  mod  N )
)
6154, 56, 57, 59, 60syl22anc 1200 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( ( K  +  J )  +  ( -u 1  x.  N ) )  mod 
N )  =  ( ( K  +  J
)  mod  N )
)
62 qsubcl 9332 . . . . . . 7  |-  ( ( ( K  +  J
)  e.  QQ  /\  N  e.  QQ )  ->  ( ( K  +  J )  -  N
)  e.  QQ )
6313, 17, 62syl2anc 406 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  -  N )  e.  QQ )
6463adantr 272 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  e.  QQ )
65 simpr 109 . . . . . . 7  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  -.  ( K  +  J )  <  N
)
6615nnred 8643 . . . . . . . . 9  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  N  e.  RR )
6766adantr 272 . . . . . . . 8  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  N  e.  RR )
6824nn0red 8935 . . . . . . . . 9  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  e.  RR )
6968adantr 272 . . . . . . . 8  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( K  +  J
)  e.  RR )
7067, 69lenltd 7803 . . . . . . 7  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( N  <_  ( K  +  J )  <->  -.  ( K  +  J
)  <  N )
)
7165, 70mpbird 166 . . . . . 6  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  N  <_  ( K  +  J ) )
7269, 67subge0d 8215 . . . . . 6  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( 0  <_  (
( K  +  J
)  -  N )  <-> 
N  <_  ( K  +  J ) ) )
7371, 72mpbird 166 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  0  <_  ( ( K  +  J )  -  N ) )
742zred 9077 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  e.  RR )
758nn0red 8935 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  e.  RR )
7621simp3d 978 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  <  N )
777simp3d 978 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  <  N )
7874, 75, 66, 66, 76, 77lt2addd 8247 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  <  ( N  +  N )
)
7968, 66, 66ltsubaddd 8221 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( (
( K  +  J
)  -  N )  <  N  <->  ( K  +  J )  <  ( N  +  N )
) )
8078, 79mpbird 166 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  -  N )  <  N
)
8180adantr 272 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  <  N )
82 modqid 10015 . . . . 5  |-  ( ( ( ( ( K  +  J )  -  N )  e.  QQ  /\  N  e.  QQ )  /\  ( 0  <_ 
( ( K  +  J )  -  N
)  /\  ( ( K  +  J )  -  N )  <  N
) )  ->  (
( ( K  +  J )  -  N
)  mod  N )  =  ( ( K  +  J )  -  N ) )
8364, 57, 73, 81, 82syl22anc 1200 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( ( K  +  J )  -  N )  mod  N
)  =  ( ( K  +  J )  -  N ) )
8453, 61, 833eqtr3d 2155 . . 3  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  mod  N
)  =  ( ( K  +  J )  -  N ) )
8524nn0zd 9075 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  +  J )  e.  ZZ )
8615nnzd 9076 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  N  e.  ZZ )
8785, 86zsubcld 9082 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  -  N )  e.  ZZ )
8887adantr 272 . . . . . 6  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  e.  ZZ )
89 elnn0z 8971 . . . . . 6  |-  ( ( ( K  +  J
)  -  N )  e.  NN0  <->  ( ( ( K  +  J )  -  N )  e.  ZZ  /\  0  <_ 
( ( K  +  J )  -  N
) ) )
9088, 73, 89sylanbrc 411 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  e.  NN0 )
9115adantr 272 . . . . 5  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  N  e.  NN )
92 elfzo0 9852 . . . . 5  |-  ( ( ( K  +  J
)  -  N )  e.  ( 0..^ N )  <->  ( ( ( K  +  J )  -  N )  e. 
NN0  /\  N  e.  NN  /\  ( ( K  +  J )  -  N )  <  N
) )
9390, 91, 81, 92syl3anbrc 1148 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  e.  ( 0..^ N ) )
9434, 45subcld 7996 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  -  N )  e.  CC )
9574, 76ltned 7800 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  K  =/=  N )
9634, 45, 95subne0d 8005 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( K  -  N )  =/=  0
)
9794, 35, 36, 96addneintr2d 7874 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  -  N )  +  J )  =/=  (
0  +  J ) )
9834, 36, 45addsubd 8017 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  -  N )  =  ( ( K  -  N
)  +  J ) )
9939eqcomd 2120 . . . . . 6  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  J  =  ( 0  +  J
) )
10097, 98, 993netr4d 2315 . . . . 5  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  -  N )  =/=  J
)
101100adantr 272 . . . 4  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  =/=  J )
102 eldifsn 3616 . . . 4  |-  ( ( ( K  +  J
)  -  N )  e.  ( ( 0..^ N )  \  { J } )  <->  ( (
( K  +  J
)  -  N )  e.  ( 0..^ N )  /\  ( ( K  +  J )  -  N )  =/= 
J ) )
10393, 101, 102sylanbrc 411 . . 3  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  -  N
)  e.  ( ( 0..^ N )  \  { J } ) )
10484, 103eqeltrd 2191 . 2  |-  ( ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  /\  -.  ( K  +  J
)  <  N )  ->  ( ( K  +  J )  mod  N
)  e.  ( ( 0..^ N )  \  { J } ) )
105 zdclt 9032 . . . 4  |-  ( ( ( K  +  J
)  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( K  +  J )  <  N )
106 exmiddc 804 . . . 4  |-  (DECID  ( K  +  J )  < 
N  ->  ( ( K  +  J )  <  N  \/  -.  ( K  +  J )  <  N ) )
107105, 106syl 14 . . 3  |-  ( ( ( K  +  J
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  +  J )  <  N  \/  -.  ( K  +  J )  <  N
) )
10885, 86, 107syl2anc 406 . 2  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  <  N  \/  -.  ( K  +  J )  <  N ) )
10944, 104, 108mpjaodan 770 1  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  mod  N )  e.  ( ( 0..^ N ) 
\  { J }
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 680  DECID wdc 802    /\ w3a 945    = wceq 1314    e. wcel 1463    =/= wne 2282    \ cdif 3034   {csn 3493   class class class wbr 3895  (class class class)co 5728   CCcc 7545   RRcr 7546   0cc0 7547   1c1 7548    + caddc 7550    x. cmul 7552    < clt 7724    <_ cle 7725    - cmin 7856   -ucneg 7857   NNcn 8630   NN0cn0 8881   ZZcz 8958   QQcq 9313  ..^cfzo 9812    mod cmo 9988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663  ax-arch 7664
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-po 4178  df-iso 4179  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-n0 8882  df-z 8959  df-uz 9229  df-q 9314  df-rp 9344  df-fz 9684  df-fzo 9813  df-fl 9936  df-mod 9989
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator