ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2clim Unicode version

Theorem 2clim 11466
Description: If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1  |-  Z  =  ( ZZ>= `  M )
2clim.2  |-  ( ph  ->  M  e.  ZZ )
2clim.3  |-  ( ph  ->  G  e.  V )
2clim.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
2clim.6  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  x
)
2clim.7  |-  ( ph  ->  F  ~~>  A )
Assertion
Ref Expression
2clim  |-  ( ph  ->  G  ~~>  A )
Distinct variable groups:    j, k, A   
x, j, F, k   
j, G, x    j, M    ph, j, k    j, Z, k, x    k, G
Allowed substitution hints:    ph( x)    A( x)    M( x, k)    V( x, j, k)

Proof of Theorem 2clim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 2clim.6 . . . . . 6  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  x
)
2 rphalfcl 9756 . . . . . 6  |-  ( y  e.  RR+  ->  ( y  /  2 )  e.  RR+ )
3 breq2 4037 . . . . . . . 8  |-  ( x  =  ( y  / 
2 )  ->  (
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  x  <->  ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  (
y  /  2 ) ) )
43rexralbidv 2523 . . . . . . 7  |-  ( x  =  ( y  / 
2 )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 ) ) )
54rspccva 2867 . . . . . 6  |-  ( ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  x  /\  ( y  /  2
)  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 ) )
61, 2, 5syl2an 289 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 ) )
7 2clim.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
8 2clim.2 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
98adantr 276 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  M  e.  ZZ )
102adantl 277 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( y  /  2 )  e.  RR+ )
11 eqidd 2197 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
12 2clim.7 . . . . . . 7  |-  ( ph  ->  F  ~~>  A )
1312adantr 276 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  F  ~~>  A )
147, 9, 10, 11, 13climi 11452 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )
157rexanuz2 11156 . . . . 5  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  <-> 
( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) ) ) )
166, 14, 15sylanbrc 417 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) ) )
177uztrn2 9619 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
18 an12 561 . . . . . . . . 9  |-  ( ( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )  <->  ( ( F `
 k )  e.  CC  /\  ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) ) ) )
19 simprr 531 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( F `  k )  e.  CC )
20 2clim.5 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
2120ad2ant2r 509 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( G `  k )  e.  CC )
2219, 21abssubd 11358 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  =  ( abs `  ( ( G `  k )  -  ( F `  k )
) ) )
2322breq1d 4043 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  (
y  /  2 )  <-> 
( abs `  (
( G `  k
)  -  ( F `
 k ) ) )  <  ( y  /  2 ) ) )
2423anbi1d 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  <->  ( ( abs `  ( ( G `
 k )  -  ( F `  k ) ) )  <  (
y  /  2 )  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) ) )
25 climcl 11447 . . . . . . . . . . . . . . 15  |-  ( F  ~~>  A  ->  A  e.  CC )
2612, 25syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  CC )
2726ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  A  e.  CC )
28 rpre 9735 . . . . . . . . . . . . . 14  |-  ( y  e.  RR+  ->  y  e.  RR )
2928ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  y  e.  RR )
30 abs3lem 11276 . . . . . . . . . . . . 13  |-  ( ( ( ( G `  k )  e.  CC  /\  A  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  y  e.  RR ) )  -> 
( ( ( abs `  ( ( G `  k )  -  ( F `  k )
) )  <  (
y  /  2 )  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3121, 27, 19, 29, 30syl22anc 1250 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( ( abs `  ( ( G `  k )  -  ( F `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
y ) )
3224, 31sylbid 150 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
y ) )
3332anassrs 400 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  /\  ( F `  k
)  e.  CC )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
y ) )
3433expimpd 363 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  (
( ( F `  k )  e.  CC  /\  ( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3518, 34biimtrid 152 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  (
( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )  ->  ( abs `  ( ( G `  k )  -  A
) )  <  y
) )
3617, 35sylan2 286 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3736anassrs 400 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3837ralimdva 2564 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3938reximdva 2599 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( G `  k )  -  A ) )  <  y ) )
4016, 39mpd 13 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y )
4140ralrimiva 2570 . 2  |-  ( ph  ->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( G `  k )  -  A
) )  <  y
)
42 2clim.3 . . 3  |-  ( ph  ->  G  e.  V )
43 eqidd 2197 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
447, 8, 42, 43, 26, 20clim2c 11449 . 2  |-  ( ph  ->  ( G  ~~>  A  <->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y ) )
4541, 44mpbird 167 1  |-  ( ph  ->  G  ~~>  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878    < clt 8061    - cmin 8197    / cdiv 8699   2c2 9041   ZZcz 9326   ZZ>=cuz 9601   RR+crp 9728   abscabs 11162    ~~> cli 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444
This theorem is referenced by:  mertensabs  11702
  Copyright terms: Public domain W3C validator