ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2clim Unicode version

Theorem 2clim 11309
Description: If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1  |-  Z  =  ( ZZ>= `  M )
2clim.2  |-  ( ph  ->  M  e.  ZZ )
2clim.3  |-  ( ph  ->  G  e.  V )
2clim.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
2clim.6  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  x
)
2clim.7  |-  ( ph  ->  F  ~~>  A )
Assertion
Ref Expression
2clim  |-  ( ph  ->  G  ~~>  A )
Distinct variable groups:    j, k, A   
x, j, F, k   
j, G, x    j, M    ph, j, k    j, Z, k, x    k, G
Allowed substitution hints:    ph( x)    A( x)    M( x, k)    V( x, j, k)

Proof of Theorem 2clim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 2clim.6 . . . . . 6  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  x
)
2 rphalfcl 9681 . . . . . 6  |-  ( y  e.  RR+  ->  ( y  /  2 )  e.  RR+ )
3 breq2 4008 . . . . . . . 8  |-  ( x  =  ( y  / 
2 )  ->  (
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  x  <->  ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  (
y  /  2 ) ) )
43rexralbidv 2503 . . . . . . 7  |-  ( x  =  ( y  / 
2 )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 ) ) )
54rspccva 2841 . . . . . 6  |-  ( ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  x  /\  ( y  /  2
)  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 ) )
61, 2, 5syl2an 289 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 ) )
7 2clim.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
8 2clim.2 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
98adantr 276 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  M  e.  ZZ )
102adantl 277 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( y  /  2 )  e.  RR+ )
11 eqidd 2178 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
12 2clim.7 . . . . . . 7  |-  ( ph  ->  F  ~~>  A )
1312adantr 276 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  F  ~~>  A )
147, 9, 10, 11, 13climi 11295 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )
157rexanuz2 11000 . . . . 5  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  <-> 
( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) ) ) )
166, 14, 15sylanbrc 417 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) ) )
177uztrn2 9545 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
18 an12 561 . . . . . . . . 9  |-  ( ( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )  <->  ( ( F `
 k )  e.  CC  /\  ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) ) ) )
19 simprr 531 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( F `  k )  e.  CC )
20 2clim.5 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
2120ad2ant2r 509 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( G `  k )  e.  CC )
2219, 21abssubd 11202 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  =  ( abs `  ( ( G `  k )  -  ( F `  k )
) ) )
2322breq1d 4014 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  (
y  /  2 )  <-> 
( abs `  (
( G `  k
)  -  ( F `
 k ) ) )  <  ( y  /  2 ) ) )
2423anbi1d 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  <->  ( ( abs `  ( ( G `
 k )  -  ( F `  k ) ) )  <  (
y  /  2 )  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) ) )
25 climcl 11290 . . . . . . . . . . . . . . 15  |-  ( F  ~~>  A  ->  A  e.  CC )
2612, 25syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  CC )
2726ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  A  e.  CC )
28 rpre 9660 . . . . . . . . . . . . . 14  |-  ( y  e.  RR+  ->  y  e.  RR )
2928ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  y  e.  RR )
30 abs3lem 11120 . . . . . . . . . . . . 13  |-  ( ( ( ( G `  k )  e.  CC  /\  A  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  y  e.  RR ) )  -> 
( ( ( abs `  ( ( G `  k )  -  ( F `  k )
) )  <  (
y  /  2 )  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3121, 27, 19, 29, 30syl22anc 1239 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( ( abs `  ( ( G `  k )  -  ( F `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
y ) )
3224, 31sylbid 150 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
y ) )
3332anassrs 400 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  /\  ( F `  k
)  e.  CC )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
y ) )
3433expimpd 363 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  (
( ( F `  k )  e.  CC  /\  ( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3518, 34biimtrid 152 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  (
( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )  ->  ( abs `  ( ( G `  k )  -  A
) )  <  y
) )
3617, 35sylan2 286 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3736anassrs 400 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3837ralimdva 2544 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3938reximdva 2579 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( G `  k )  -  A ) )  <  y ) )
4016, 39mpd 13 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y )
4140ralrimiva 2550 . 2  |-  ( ph  ->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( G `  k )  -  A
) )  <  y
)
42 2clim.3 . . 3  |-  ( ph  ->  G  e.  V )
43 eqidd 2178 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
447, 8, 42, 43, 26, 20clim2c 11292 . 2  |-  ( ph  ->  ( G  ~~>  A  <->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y ) )
4541, 44mpbird 167 1  |-  ( ph  ->  G  ~~>  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   class class class wbr 4004   ` cfv 5217  (class class class)co 5875   CCcc 7809   RRcr 7810    < clt 7992    - cmin 8128    / cdiv 8629   2c2 8970   ZZcz 9253   ZZ>=cuz 9528   RR+crp 9653   abscabs 11006    ~~> cli 11286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-rp 9654  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287
This theorem is referenced by:  mertensabs  11545
  Copyright terms: Public domain W3C validator