ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2clim Unicode version

Theorem 2clim 11100
Description: If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1  |-  Z  =  ( ZZ>= `  M )
2clim.2  |-  ( ph  ->  M  e.  ZZ )
2clim.3  |-  ( ph  ->  G  e.  V )
2clim.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
2clim.6  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  x
)
2clim.7  |-  ( ph  ->  F  ~~>  A )
Assertion
Ref Expression
2clim  |-  ( ph  ->  G  ~~>  A )
Distinct variable groups:    j, k, A   
x, j, F, k   
j, G, x    j, M    ph, j, k    j, Z, k, x    k, G
Allowed substitution hints:    ph( x)    A( x)    M( x, k)    V( x, j, k)

Proof of Theorem 2clim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 2clim.6 . . . . . 6  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  x
)
2 rphalfcl 9496 . . . . . 6  |-  ( y  e.  RR+  ->  ( y  /  2 )  e.  RR+ )
3 breq2 3939 . . . . . . . 8  |-  ( x  =  ( y  / 
2 )  ->  (
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  x  <->  ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  (
y  /  2 ) ) )
43rexralbidv 2464 . . . . . . 7  |-  ( x  =  ( y  / 
2 )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 ) ) )
54rspccva 2791 . . . . . 6  |-  ( ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  x  /\  ( y  /  2
)  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 ) )
61, 2, 5syl2an 287 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 ) )
7 2clim.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
8 2clim.2 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
98adantr 274 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  M  e.  ZZ )
102adantl 275 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( y  /  2 )  e.  RR+ )
11 eqidd 2141 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
12 2clim.7 . . . . . . 7  |-  ( ph  ->  F  ~~>  A )
1312adantr 274 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  F  ~~>  A )
147, 9, 10, 11, 13climi 11086 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )
157rexanuz2 10793 . . . . 5  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  <-> 
( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) ) ) )
166, 14, 15sylanbrc 414 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) ) )
177uztrn2 9365 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
18 an12 551 . . . . . . . . 9  |-  ( ( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )  <->  ( ( F `
 k )  e.  CC  /\  ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) ) ) )
19 simprr 522 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( F `  k )  e.  CC )
20 2clim.5 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
2120ad2ant2r 501 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( G `  k )  e.  CC )
2219, 21abssubd 10995 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  =  ( abs `  ( ( G `  k )  -  ( F `  k )
) ) )
2322breq1d 3945 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  (
y  /  2 )  <-> 
( abs `  (
( G `  k
)  -  ( F `
 k ) ) )  <  ( y  /  2 ) ) )
2423anbi1d 461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  <->  ( ( abs `  ( ( G `
 k )  -  ( F `  k ) ) )  <  (
y  /  2 )  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) ) )
25 climcl 11081 . . . . . . . . . . . . . . 15  |-  ( F  ~~>  A  ->  A  e.  CC )
2612, 25syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  CC )
2726ad2antrr 480 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  A  e.  CC )
28 rpre 9475 . . . . . . . . . . . . . 14  |-  ( y  e.  RR+  ->  y  e.  RR )
2928ad2antlr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  y  e.  RR )
30 abs3lem 10913 . . . . . . . . . . . . 13  |-  ( ( ( ( G `  k )  e.  CC  /\  A  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  y  e.  RR ) )  -> 
( ( ( abs `  ( ( G `  k )  -  ( F `  k )
) )  <  (
y  /  2 )  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3121, 27, 19, 29, 30syl22anc 1218 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( ( abs `  ( ( G `  k )  -  ( F `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
y ) )
3224, 31sylbid 149 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
y ) )
3332anassrs 398 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  /\  ( F `  k
)  e.  CC )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
y ) )
3433expimpd 361 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  (
( ( F `  k )  e.  CC  /\  ( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3518, 34syl5bi 151 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  (
( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )  ->  ( abs `  ( ( G `  k )  -  A
) )  <  y
) )
3617, 35sylan2 284 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3736anassrs 398 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3837ralimdva 2502 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3938reximdva 2537 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( G `  k )  -  A ) )  <  y ) )
4016, 39mpd 13 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y )
4140ralrimiva 2508 . 2  |-  ( ph  ->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( G `  k )  -  A
) )  <  y
)
42 2clim.3 . . 3  |-  ( ph  ->  G  e.  V )
43 eqidd 2141 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
447, 8, 42, 43, 26, 20clim2c 11083 . 2  |-  ( ph  ->  ( G  ~~>  A  <->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y ) )
4541, 44mpbird 166 1  |-  ( ph  ->  G  ~~>  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   class class class wbr 3935   ` cfv 5129  (class class class)co 5780   CCcc 7640   RRcr 7641    < clt 7822    - cmin 7955    / cdiv 8454   2c2 8793   ZZcz 9076   ZZ>=cuz 9348   RR+crp 9468   abscabs 10799    ~~> cli 11077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4049  ax-sep 4052  ax-nul 4060  ax-pow 4104  ax-pr 4137  ax-un 4361  ax-setind 4458  ax-iinf 4508  ax-cnex 7733  ax-resscn 7734  ax-1cn 7735  ax-1re 7736  ax-icn 7737  ax-addcl 7738  ax-addrcl 7739  ax-mulcl 7740  ax-mulrcl 7741  ax-addcom 7742  ax-mulcom 7743  ax-addass 7744  ax-mulass 7745  ax-distr 7746  ax-i2m1 7747  ax-0lt1 7748  ax-1rid 7749  ax-0id 7750  ax-rnegex 7751  ax-precex 7752  ax-cnre 7753  ax-pre-ltirr 7754  ax-pre-ltwlin 7755  ax-pre-lttrn 7756  ax-pre-apti 7757  ax-pre-ltadd 7758  ax-pre-mulgt0 7759  ax-pre-mulext 7760  ax-arch 7761  ax-caucvg 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-nul 3367  df-if 3478  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-int 3778  df-iun 3821  df-br 3936  df-opab 3996  df-mpt 3997  df-tr 4033  df-id 4221  df-po 4224  df-iso 4225  df-iord 4294  df-on 4296  df-ilim 4297  df-suc 4299  df-iom 4511  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-f 5133  df-f1 5134  df-fo 5135  df-f1o 5136  df-fv 5137  df-riota 5736  df-ov 5783  df-oprab 5784  df-mpo 5785  df-1st 6044  df-2nd 6045  df-recs 6208  df-frec 6294  df-pnf 7824  df-mnf 7825  df-xr 7826  df-ltxr 7827  df-le 7828  df-sub 7957  df-neg 7958  df-reap 8359  df-ap 8366  df-div 8455  df-inn 8743  df-2 8801  df-3 8802  df-4 8803  df-n0 9000  df-z 9077  df-uz 9349  df-rp 9469  df-seqfrec 10248  df-exp 10322  df-cj 10644  df-re 10645  df-im 10646  df-rsqrt 10800  df-abs 10801  df-clim 11078
This theorem is referenced by:  mertensabs  11336
  Copyright terms: Public domain W3C validator