ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2clim Unicode version

Theorem 2clim 11612
Description: If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1  |-  Z  =  ( ZZ>= `  M )
2clim.2  |-  ( ph  ->  M  e.  ZZ )
2clim.3  |-  ( ph  ->  G  e.  V )
2clim.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
2clim.6  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  x
)
2clim.7  |-  ( ph  ->  F  ~~>  A )
Assertion
Ref Expression
2clim  |-  ( ph  ->  G  ~~>  A )
Distinct variable groups:    j, k, A   
x, j, F, k   
j, G, x    j, M    ph, j, k    j, Z, k, x    k, G
Allowed substitution hints:    ph( x)    A( x)    M( x, k)    V( x, j, k)

Proof of Theorem 2clim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 2clim.6 . . . . . 6  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  x
)
2 rphalfcl 9803 . . . . . 6  |-  ( y  e.  RR+  ->  ( y  /  2 )  e.  RR+ )
3 breq2 4048 . . . . . . . 8  |-  ( x  =  ( y  / 
2 )  ->  (
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  x  <->  ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  (
y  /  2 ) ) )
43rexralbidv 2532 . . . . . . 7  |-  ( x  =  ( y  / 
2 )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 ) ) )
54rspccva 2876 . . . . . 6  |-  ( ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  x  /\  ( y  /  2
)  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 ) )
61, 2, 5syl2an 289 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 ) )
7 2clim.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
8 2clim.2 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
98adantr 276 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  M  e.  ZZ )
102adantl 277 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( y  /  2 )  e.  RR+ )
11 eqidd 2206 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
12 2clim.7 . . . . . . 7  |-  ( ph  ->  F  ~~>  A )
1312adantr 276 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  F  ~~>  A )
147, 9, 10, 11, 13climi 11598 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )
157rexanuz2 11302 . . . . 5  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  <-> 
( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) ) ) )
166, 14, 15sylanbrc 417 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) ) )
177uztrn2 9666 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
18 an12 561 . . . . . . . . 9  |-  ( ( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )  <->  ( ( F `
 k )  e.  CC  /\  ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) ) ) )
19 simprr 531 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( F `  k )  e.  CC )
20 2clim.5 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
2120ad2ant2r 509 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( G `  k )  e.  CC )
2219, 21abssubd 11504 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  =  ( abs `  ( ( G `  k )  -  ( F `  k )
) ) )
2322breq1d 4054 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  (
y  /  2 )  <-> 
( abs `  (
( G `  k
)  -  ( F `
 k ) ) )  <  ( y  /  2 ) ) )
2423anbi1d 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  <->  ( ( abs `  ( ( G `
 k )  -  ( F `  k ) ) )  <  (
y  /  2 )  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) ) )
25 climcl 11593 . . . . . . . . . . . . . . 15  |-  ( F  ~~>  A  ->  A  e.  CC )
2612, 25syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  CC )
2726ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  A  e.  CC )
28 rpre 9782 . . . . . . . . . . . . . 14  |-  ( y  e.  RR+  ->  y  e.  RR )
2928ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  y  e.  RR )
30 abs3lem 11422 . . . . . . . . . . . . 13  |-  ( ( ( ( G `  k )  e.  CC  /\  A  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  y  e.  RR ) )  -> 
( ( ( abs `  ( ( G `  k )  -  ( F `  k )
) )  <  (
y  /  2 )  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3121, 27, 19, 29, 30syl22anc 1251 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( ( abs `  ( ( G `  k )  -  ( F `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
y ) )
3224, 31sylbid 150 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
y ) )
3332anassrs 400 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  /\  ( F `  k
)  e.  CC )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
y ) )
3433expimpd 363 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  (
( ( F `  k )  e.  CC  /\  ( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3518, 34biimtrid 152 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  (
( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )  ->  ( abs `  ( ( G `  k )  -  A
) )  <  y
) )
3617, 35sylan2 286 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3736anassrs 400 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3837ralimdva 2573 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3938reximdva 2608 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( G `  k )  -  A ) )  <  y ) )
4016, 39mpd 13 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y )
4140ralrimiva 2579 . 2  |-  ( ph  ->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( G `  k )  -  A
) )  <  y
)
42 2clim.3 . . 3  |-  ( ph  ->  G  e.  V )
43 eqidd 2206 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
447, 8, 42, 43, 26, 20clim2c 11595 . 2  |-  ( ph  ->  ( G  ~~>  A  <->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y ) )
4541, 44mpbird 167 1  |-  ( ph  ->  G  ~~>  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924    < clt 8107    - cmin 8243    / cdiv 8745   2c2 9087   ZZcz 9372   ZZ>=cuz 9648   RR+crp 9775   abscabs 11308    ~~> cli 11589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590
This theorem is referenced by:  mertensabs  11848
  Copyright terms: Public domain W3C validator