ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2clim Unicode version

Theorem 2clim 11242
Description: If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1  |-  Z  =  ( ZZ>= `  M )
2clim.2  |-  ( ph  ->  M  e.  ZZ )
2clim.3  |-  ( ph  ->  G  e.  V )
2clim.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
2clim.6  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  x
)
2clim.7  |-  ( ph  ->  F  ~~>  A )
Assertion
Ref Expression
2clim  |-  ( ph  ->  G  ~~>  A )
Distinct variable groups:    j, k, A   
x, j, F, k   
j, G, x    j, M    ph, j, k    j, Z, k, x    k, G
Allowed substitution hints:    ph( x)    A( x)    M( x, k)    V( x, j, k)

Proof of Theorem 2clim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 2clim.6 . . . . . 6  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  x
)
2 rphalfcl 9617 . . . . . 6  |-  ( y  e.  RR+  ->  ( y  /  2 )  e.  RR+ )
3 breq2 3986 . . . . . . . 8  |-  ( x  =  ( y  / 
2 )  ->  (
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  x  <->  ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  (
y  /  2 ) ) )
43rexralbidv 2492 . . . . . . 7  |-  ( x  =  ( y  / 
2 )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 ) ) )
54rspccva 2829 . . . . . 6  |-  ( ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  x  /\  ( y  /  2
)  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 ) )
61, 2, 5syl2an 287 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 ) )
7 2clim.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
8 2clim.2 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
98adantr 274 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  M  e.  ZZ )
102adantl 275 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( y  /  2 )  e.  RR+ )
11 eqidd 2166 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
12 2clim.7 . . . . . . 7  |-  ( ph  ->  F  ~~>  A )
1312adantr 274 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  F  ~~>  A )
147, 9, 10, 11, 13climi 11228 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )
157rexanuz2 10933 . . . . 5  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  <-> 
( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) ) ) )
166, 14, 15sylanbrc 414 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) ) )
177uztrn2 9483 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
18 an12 551 . . . . . . . . 9  |-  ( ( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )  <->  ( ( F `
 k )  e.  CC  /\  ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) ) ) )
19 simprr 522 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( F `  k )  e.  CC )
20 2clim.5 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
2120ad2ant2r 501 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( G `  k )  e.  CC )
2219, 21abssubd 11135 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  =  ( abs `  ( ( G `  k )  -  ( F `  k )
) ) )
2322breq1d 3992 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  (
y  /  2 )  <-> 
( abs `  (
( G `  k
)  -  ( F `
 k ) ) )  <  ( y  /  2 ) ) )
2423anbi1d 461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  <->  ( ( abs `  ( ( G `
 k )  -  ( F `  k ) ) )  <  (
y  /  2 )  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) ) )
25 climcl 11223 . . . . . . . . . . . . . . 15  |-  ( F  ~~>  A  ->  A  e.  CC )
2612, 25syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  CC )
2726ad2antrr 480 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  A  e.  CC )
28 rpre 9596 . . . . . . . . . . . . . 14  |-  ( y  e.  RR+  ->  y  e.  RR )
2928ad2antlr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  y  e.  RR )
30 abs3lem 11053 . . . . . . . . . . . . 13  |-  ( ( ( ( G `  k )  e.  CC  /\  A  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  y  e.  RR ) )  -> 
( ( ( abs `  ( ( G `  k )  -  ( F `  k )
) )  <  (
y  /  2 )  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3121, 27, 19, 29, 30syl22anc 1229 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( ( abs `  ( ( G `  k )  -  ( F `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
y ) )
3224, 31sylbid 149 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
k  e.  Z  /\  ( F `  k )  e.  CC ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
y ) )
3332anassrs 398 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  /\  ( F `  k
)  e.  CC )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( y  /  2
) )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
y ) )
3433expimpd 361 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  (
( ( F `  k )  e.  CC  /\  ( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3518, 34syl5bi 151 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  (
( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )  ->  ( abs `  ( ( G `  k )  -  A
) )  <  y
) )
3617, 35sylan2 284 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3736anassrs 398 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  ( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3837ralimdva 2533 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) )  <  ( y  /  2 )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( y  /  2 ) ) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y ) )
3938reximdva 2568 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  ( y  / 
2 )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( y  / 
2 ) ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( G `  k )  -  A ) )  <  y ) )
4016, 39mpd 13 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y )
4140ralrimiva 2539 . 2  |-  ( ph  ->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( G `  k )  -  A
) )  <  y
)
42 2clim.3 . . 3  |-  ( ph  ->  G  e.  V )
43 eqidd 2166 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
447, 8, 42, 43, 26, 20clim2c 11225 . 2  |-  ( ph  ->  ( G  ~~>  A  <->  A. y  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y ) )
4541, 44mpbird 166 1  |-  ( ph  ->  G  ~~>  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752    < clt 7933    - cmin 8069    / cdiv 8568   2c2 8908   ZZcz 9191   ZZ>=cuz 9466   RR+crp 9589   abscabs 10939    ~~> cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220
This theorem is referenced by:  mertensabs  11478
  Copyright terms: Public domain W3C validator