ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzlt2d Unicode version

Theorem frec2uzlt2d 10407
Description: The mapping  G (see frec2uz0d 10402) preserves order. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frec2uzzd.a  |-  ( ph  ->  A  e.  om )
frec2uzltd.b  |-  ( ph  ->  B  e.  om )
Assertion
Ref Expression
frec2uzlt2d  |-  ( ph  ->  ( A  e.  B  <->  ( G `  A )  <  ( G `  B ) ) )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    B( x)    G( x)

Proof of Theorem frec2uzlt2d
StepHypRef Expression
1 frec2uz.1 . . 3  |-  ( ph  ->  C  e.  ZZ )
2 frec2uz.2 . . 3  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
3 frec2uzzd.a . . 3  |-  ( ph  ->  A  e.  om )
4 frec2uzltd.b . . 3  |-  ( ph  ->  B  e.  om )
51, 2, 3, 4frec2uzltd 10406 . 2  |-  ( ph  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
6 nntri3or 6497 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
73, 4, 6syl2anc 411 . . 3  |-  ( ph  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
8 ax-1 6 . . . . 5  |-  ( A  e.  B  ->  (
( G `  A
)  <  ( G `  B )  ->  A  e.  B ) )
98a1i 9 . . . 4  |-  ( ph  ->  ( A  e.  B  ->  ( ( G `  A )  <  ( G `  B )  ->  A  e.  B ) ) )
10 fveq2 5517 . . . . . . . . . 10  |-  ( A  =  B  ->  ( G `  A )  =  ( G `  B ) )
1110adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  A  =  B )  ->  ( G `  A )  =  ( G `  B ) )
1211breq2d 4017 . . . . . . . 8  |-  ( (
ph  /\  A  =  B )  ->  (
( G `  A
)  <  ( G `  A )  <->  ( G `  A )  <  ( G `  B )
) )
1312biimpar 297 . . . . . . 7  |-  ( ( ( ph  /\  A  =  B )  /\  ( G `  A )  <  ( G `  B
) )  ->  ( G `  A )  <  ( G `  A
) )
141, 2, 3frec2uzzd 10403 . . . . . . . . . . 11  |-  ( ph  ->  ( G `  A
)  e.  ZZ )
1514adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  A  =  B )  ->  ( G `  A )  e.  ZZ )
1615adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =  B )  /\  ( G `  A )  <  ( G `  B
) )  ->  ( G `  A )  e.  ZZ )
1716zred 9378 . . . . . . . 8  |-  ( ( ( ph  /\  A  =  B )  /\  ( G `  A )  <  ( G `  B
) )  ->  ( G `  A )  e.  RR )
1817ltnrd 8072 . . . . . . 7  |-  ( ( ( ph  /\  A  =  B )  /\  ( G `  A )  <  ( G `  B
) )  ->  -.  ( G `  A )  <  ( G `  A ) )
1913, 18pm2.21dd 620 . . . . . 6  |-  ( ( ( ph  /\  A  =  B )  /\  ( G `  A )  <  ( G `  B
) )  ->  A  e.  B )
2019ex 115 . . . . 5  |-  ( (
ph  /\  A  =  B )  ->  (
( G `  A
)  <  ( G `  B )  ->  A  e.  B ) )
2120ex 115 . . . 4  |-  ( ph  ->  ( A  =  B  ->  ( ( G `
 A )  < 
( G `  B
)  ->  A  e.  B ) ) )
221, 2, 4frec2uzzd 10403 . . . . . . . . 9  |-  ( ph  ->  ( G `  B
)  e.  ZZ )
2322adantr 276 . . . . . . . 8  |-  ( (
ph  /\  B  e.  A )  ->  ( G `  B )  e.  ZZ )
2423zred 9378 . . . . . . 7  |-  ( (
ph  /\  B  e.  A )  ->  ( G `  B )  e.  RR )
2514adantr 276 . . . . . . . 8  |-  ( (
ph  /\  B  e.  A )  ->  ( G `  A )  e.  ZZ )
2625zred 9378 . . . . . . 7  |-  ( (
ph  /\  B  e.  A )  ->  ( G `  A )  e.  RR )
271, 2, 4, 3frec2uzltd 10406 . . . . . . . 8  |-  ( ph  ->  ( B  e.  A  ->  ( G `  B
)  <  ( G `  A ) ) )
2827imp 124 . . . . . . 7  |-  ( (
ph  /\  B  e.  A )  ->  ( G `  B )  <  ( G `  A
) )
2924, 26, 28ltnsymd 8080 . . . . . 6  |-  ( (
ph  /\  B  e.  A )  ->  -.  ( G `  A )  <  ( G `  B ) )
3029pm2.21d 619 . . . . 5  |-  ( (
ph  /\  B  e.  A )  ->  (
( G `  A
)  <  ( G `  B )  ->  A  e.  B ) )
3130ex 115 . . . 4  |-  ( ph  ->  ( B  e.  A  ->  ( ( G `  A )  <  ( G `  B )  ->  A  e.  B ) ) )
329, 21, 313jaod 1304 . . 3  |-  ( ph  ->  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  ->  (
( G `  A
)  <  ( G `  B )  ->  A  e.  B ) ) )
337, 32mpd 13 . 2  |-  ( ph  ->  ( ( G `  A )  <  ( G `  B )  ->  A  e.  B ) )
345, 33impbid 129 1  |-  ( ph  ->  ( A  e.  B  <->  ( G `  A )  <  ( G `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 977    = wceq 1353    e. wcel 2148   class class class wbr 4005    |-> cmpt 4066   omcom 4591   ` cfv 5218  (class class class)co 5878  freccfrec 6394   1c1 7815    + caddc 7817    < clt 7995   ZZcz 9256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-recs 6309  df-frec 6395  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-inn 8923  df-n0 9180  df-z 9257  df-uz 9532
This theorem is referenced by:  frec2uzisod  10410  frec2uzled  10432
  Copyright terms: Public domain W3C validator