ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzlt2d Unicode version

Theorem frec2uzlt2d 10496
Description: The mapping  G (see frec2uz0d 10491) preserves order. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frec2uzzd.a  |-  ( ph  ->  A  e.  om )
frec2uzltd.b  |-  ( ph  ->  B  e.  om )
Assertion
Ref Expression
frec2uzlt2d  |-  ( ph  ->  ( A  e.  B  <->  ( G `  A )  <  ( G `  B ) ) )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    B( x)    G( x)

Proof of Theorem frec2uzlt2d
StepHypRef Expression
1 frec2uz.1 . . 3  |-  ( ph  ->  C  e.  ZZ )
2 frec2uz.2 . . 3  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
3 frec2uzzd.a . . 3  |-  ( ph  ->  A  e.  om )
4 frec2uzltd.b . . 3  |-  ( ph  ->  B  e.  om )
51, 2, 3, 4frec2uzltd 10495 . 2  |-  ( ph  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
6 nntri3or 6551 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
73, 4, 6syl2anc 411 . . 3  |-  ( ph  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
8 ax-1 6 . . . . 5  |-  ( A  e.  B  ->  (
( G `  A
)  <  ( G `  B )  ->  A  e.  B ) )
98a1i 9 . . . 4  |-  ( ph  ->  ( A  e.  B  ->  ( ( G `  A )  <  ( G `  B )  ->  A  e.  B ) ) )
10 fveq2 5558 . . . . . . . . . 10  |-  ( A  =  B  ->  ( G `  A )  =  ( G `  B ) )
1110adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  A  =  B )  ->  ( G `  A )  =  ( G `  B ) )
1211breq2d 4045 . . . . . . . 8  |-  ( (
ph  /\  A  =  B )  ->  (
( G `  A
)  <  ( G `  A )  <->  ( G `  A )  <  ( G `  B )
) )
1312biimpar 297 . . . . . . 7  |-  ( ( ( ph  /\  A  =  B )  /\  ( G `  A )  <  ( G `  B
) )  ->  ( G `  A )  <  ( G `  A
) )
141, 2, 3frec2uzzd 10492 . . . . . . . . . . 11  |-  ( ph  ->  ( G `  A
)  e.  ZZ )
1514adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  A  =  B )  ->  ( G `  A )  e.  ZZ )
1615adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =  B )  /\  ( G `  A )  <  ( G `  B
) )  ->  ( G `  A )  e.  ZZ )
1716zred 9448 . . . . . . . 8  |-  ( ( ( ph  /\  A  =  B )  /\  ( G `  A )  <  ( G `  B
) )  ->  ( G `  A )  e.  RR )
1817ltnrd 8138 . . . . . . 7  |-  ( ( ( ph  /\  A  =  B )  /\  ( G `  A )  <  ( G `  B
) )  ->  -.  ( G `  A )  <  ( G `  A ) )
1913, 18pm2.21dd 621 . . . . . 6  |-  ( ( ( ph  /\  A  =  B )  /\  ( G `  A )  <  ( G `  B
) )  ->  A  e.  B )
2019ex 115 . . . . 5  |-  ( (
ph  /\  A  =  B )  ->  (
( G `  A
)  <  ( G `  B )  ->  A  e.  B ) )
2120ex 115 . . . 4  |-  ( ph  ->  ( A  =  B  ->  ( ( G `
 A )  < 
( G `  B
)  ->  A  e.  B ) ) )
221, 2, 4frec2uzzd 10492 . . . . . . . . 9  |-  ( ph  ->  ( G `  B
)  e.  ZZ )
2322adantr 276 . . . . . . . 8  |-  ( (
ph  /\  B  e.  A )  ->  ( G `  B )  e.  ZZ )
2423zred 9448 . . . . . . 7  |-  ( (
ph  /\  B  e.  A )  ->  ( G `  B )  e.  RR )
2514adantr 276 . . . . . . . 8  |-  ( (
ph  /\  B  e.  A )  ->  ( G `  A )  e.  ZZ )
2625zred 9448 . . . . . . 7  |-  ( (
ph  /\  B  e.  A )  ->  ( G `  A )  e.  RR )
271, 2, 4, 3frec2uzltd 10495 . . . . . . . 8  |-  ( ph  ->  ( B  e.  A  ->  ( G `  B
)  <  ( G `  A ) ) )
2827imp 124 . . . . . . 7  |-  ( (
ph  /\  B  e.  A )  ->  ( G `  B )  <  ( G `  A
) )
2924, 26, 28ltnsymd 8146 . . . . . 6  |-  ( (
ph  /\  B  e.  A )  ->  -.  ( G `  A )  <  ( G `  B ) )
3029pm2.21d 620 . . . . 5  |-  ( (
ph  /\  B  e.  A )  ->  (
( G `  A
)  <  ( G `  B )  ->  A  e.  B ) )
3130ex 115 . . . 4  |-  ( ph  ->  ( B  e.  A  ->  ( ( G `  A )  <  ( G `  B )  ->  A  e.  B ) ) )
329, 21, 313jaod 1315 . . 3  |-  ( ph  ->  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  ->  (
( G `  A
)  <  ( G `  B )  ->  A  e.  B ) ) )
337, 32mpd 13 . 2  |-  ( ph  ->  ( ( G `  A )  <  ( G `  B )  ->  A  e.  B ) )
345, 33impbid 129 1  |-  ( ph  ->  ( A  e.  B  <->  ( G `  A )  <  ( G `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    = wceq 1364    e. wcel 2167   class class class wbr 4033    |-> cmpt 4094   omcom 4626   ` cfv 5258  (class class class)co 5922  freccfrec 6448   1c1 7880    + caddc 7882    < clt 8061   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602
This theorem is referenced by:  frec2uzisod  10499  frec2uzled  10521  nninfctlemfo  12207
  Copyright terms: Public domain W3C validator