ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccneg Unicode version

Theorem iccneg 10113
Description: Membership in a negated closed real interval. (Contributed by Paul Chapman, 26-Nov-2007.)
Assertion
Ref Expression
iccneg  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A [,] B )  <->  -u C  e.  ( -u B [,] -u A ) ) )

Proof of Theorem iccneg
StepHypRef Expression
1 renegcl 8335 . . . . 5  |-  ( C  e.  RR  ->  -u C  e.  RR )
2 ax-1 6 . . . . 5  |-  ( C  e.  RR  ->  ( -u C  e.  RR  ->  C  e.  RR ) )
31, 2impbid2 143 . . . 4  |-  ( C  e.  RR  ->  ( C  e.  RR  <->  -u C  e.  RR ) )
433ad2ant3 1023 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  RR  <->  -u C  e.  RR ) )
5 ancom 266 . . . 4  |-  ( ( C  <_  B  /\  A  <_  C )  <->  ( A  <_  C  /\  C  <_  B ) )
6 leneg 8540 . . . . . . 7  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  <_  B  <->  -u B  <_  -u C ) )
76ancoms 268 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( C  <_  B  <->  -u B  <_  -u C ) )
873adant1 1018 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <_  B  <->  -u B  <_  -u C ) )
9 leneg 8540 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -u C  <_  -u A ) )
1093adant2 1019 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -u C  <_  -u A ) )
118, 10anbi12d 473 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  <_  B  /\  A  <_  C )  <-> 
( -u B  <_  -u C  /\  -u C  <_  -u A
) ) )
125, 11bitr3id 194 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  C  /\  C  <_  B )  <-> 
( -u B  <_  -u C  /\  -u C  <_  -u A
) ) )
134, 12anbi12d 473 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  e.  RR  /\  ( A  <_  C  /\  C  <_  B ) )  <->  ( -u C  e.  RR  /\  ( -u B  <_  -u C  /\  -u C  <_ 
-u A ) ) ) )
14 elicc2 10062 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) ) )
15143adant3 1020 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
) ) )
16 3anass 985 . . 3  |-  ( ( C  e.  RR  /\  A  <_  C  /\  C  <_  B )  <->  ( C  e.  RR  /\  ( A  <_  C  /\  C  <_  B ) ) )
1715, 16bitrdi 196 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR  /\  ( A  <_  C  /\  C  <_  B ) ) ) )
18 renegcl 8335 . . . . 5  |-  ( B  e.  RR  ->  -u B  e.  RR )
19 renegcl 8335 . . . . 5  |-  ( A  e.  RR  ->  -u A  e.  RR )
20 elicc2 10062 . . . . 5  |-  ( (
-u B  e.  RR  /\  -u A  e.  RR )  ->  ( -u C  e.  ( -u B [,] -u A )  <->  ( -u C  e.  RR  /\  -u B  <_ 
-u C  /\  -u C  <_ 
-u A ) ) )
2118, 19, 20syl2anr 290 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u C  e.  ( -u B [,] -u A )  <->  ( -u C  e.  RR  /\  -u B  <_ 
-u C  /\  -u C  <_ 
-u A ) ) )
22213adant3 1020 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -u C  e.  ( -u B [,] -u A )  <->  ( -u C  e.  RR  /\  -u B  <_ 
-u C  /\  -u C  <_ 
-u A ) ) )
23 3anass 985 . . 3  |-  ( (
-u C  e.  RR  /\  -u B  <_  -u C  /\  -u C  <_  -u A
)  <->  ( -u C  e.  RR  /\  ( -u B  <_  -u C  /\  -u C  <_ 
-u A ) ) )
2422, 23bitrdi 196 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -u C  e.  ( -u B [,] -u A )  <->  ( -u C  e.  RR  /\  ( -u B  <_  -u C  /\  -u C  <_ 
-u A ) ) ) )
2513, 17, 243bitr4d 220 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A [,] B )  <->  -u C  e.  ( -u B [,] -u A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    e. wcel 2176   class class class wbr 4045  (class class class)co 5946   RRcr 7926    <_ cle 8110   -ucneg 8246   [,]cicc 10015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-po 4344  df-iso 4345  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-icc 10019
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator