ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccneg Unicode version

Theorem iccneg 10146
Description: Membership in a negated closed real interval. (Contributed by Paul Chapman, 26-Nov-2007.)
Assertion
Ref Expression
iccneg  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A [,] B )  <->  -u C  e.  ( -u B [,] -u A ) ) )

Proof of Theorem iccneg
StepHypRef Expression
1 renegcl 8368 . . . . 5  |-  ( C  e.  RR  ->  -u C  e.  RR )
2 ax-1 6 . . . . 5  |-  ( C  e.  RR  ->  ( -u C  e.  RR  ->  C  e.  RR ) )
31, 2impbid2 143 . . . 4  |-  ( C  e.  RR  ->  ( C  e.  RR  <->  -u C  e.  RR ) )
433ad2ant3 1023 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  RR  <->  -u C  e.  RR ) )
5 ancom 266 . . . 4  |-  ( ( C  <_  B  /\  A  <_  C )  <->  ( A  <_  C  /\  C  <_  B ) )
6 leneg 8573 . . . . . . 7  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  <_  B  <->  -u B  <_  -u C ) )
76ancoms 268 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( C  <_  B  <->  -u B  <_  -u C ) )
873adant1 1018 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <_  B  <->  -u B  <_  -u C ) )
9 leneg 8573 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -u C  <_  -u A ) )
1093adant2 1019 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -u C  <_  -u A ) )
118, 10anbi12d 473 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  <_  B  /\  A  <_  C )  <-> 
( -u B  <_  -u C  /\  -u C  <_  -u A
) ) )
125, 11bitr3id 194 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  C  /\  C  <_  B )  <-> 
( -u B  <_  -u C  /\  -u C  <_  -u A
) ) )
134, 12anbi12d 473 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  e.  RR  /\  ( A  <_  C  /\  C  <_  B ) )  <->  ( -u C  e.  RR  /\  ( -u B  <_  -u C  /\  -u C  <_ 
-u A ) ) ) )
14 elicc2 10095 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) ) )
15143adant3 1020 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
) ) )
16 3anass 985 . . 3  |-  ( ( C  e.  RR  /\  A  <_  C  /\  C  <_  B )  <->  ( C  e.  RR  /\  ( A  <_  C  /\  C  <_  B ) ) )
1715, 16bitrdi 196 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR  /\  ( A  <_  C  /\  C  <_  B ) ) ) )
18 renegcl 8368 . . . . 5  |-  ( B  e.  RR  ->  -u B  e.  RR )
19 renegcl 8368 . . . . 5  |-  ( A  e.  RR  ->  -u A  e.  RR )
20 elicc2 10095 . . . . 5  |-  ( (
-u B  e.  RR  /\  -u A  e.  RR )  ->  ( -u C  e.  ( -u B [,] -u A )  <->  ( -u C  e.  RR  /\  -u B  <_ 
-u C  /\  -u C  <_ 
-u A ) ) )
2118, 19, 20syl2anr 290 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u C  e.  ( -u B [,] -u A )  <->  ( -u C  e.  RR  /\  -u B  <_ 
-u C  /\  -u C  <_ 
-u A ) ) )
22213adant3 1020 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -u C  e.  ( -u B [,] -u A )  <->  ( -u C  e.  RR  /\  -u B  <_ 
-u C  /\  -u C  <_ 
-u A ) ) )
23 3anass 985 . . 3  |-  ( (
-u C  e.  RR  /\  -u B  <_  -u C  /\  -u C  <_  -u A
)  <->  ( -u C  e.  RR  /\  ( -u B  <_  -u C  /\  -u C  <_ 
-u A ) ) )
2422, 23bitrdi 196 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -u C  e.  ( -u B [,] -u A )  <->  ( -u C  e.  RR  /\  ( -u B  <_  -u C  /\  -u C  <_ 
-u A ) ) ) )
2513, 17, 243bitr4d 220 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A [,] B )  <->  -u C  e.  ( -u B [,] -u A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   RRcr 7959    <_ cle 8143   -ucneg 8279   [,]cicc 10048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-icc 10052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator