ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccneg Unicode version

Theorem iccneg 9555
Description: Membership in a negated closed real interval. (Contributed by Paul Chapman, 26-Nov-2007.)
Assertion
Ref Expression
iccneg  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A [,] B )  <->  -u C  e.  ( -u B [,] -u A ) ) )

Proof of Theorem iccneg
StepHypRef Expression
1 renegcl 7840 . . . . 5  |-  ( C  e.  RR  ->  -u C  e.  RR )
2 ax-1 5 . . . . 5  |-  ( C  e.  RR  ->  ( -u C  e.  RR  ->  C  e.  RR ) )
31, 2impbid2 142 . . . 4  |-  ( C  e.  RR  ->  ( C  e.  RR  <->  -u C  e.  RR ) )
433ad2ant3 969 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  RR  <->  -u C  e.  RR ) )
5 ancom 263 . . . 4  |-  ( ( C  <_  B  /\  A  <_  C )  <->  ( A  <_  C  /\  C  <_  B ) )
6 leneg 8040 . . . . . . 7  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  <_  B  <->  -u B  <_  -u C ) )
76ancoms 265 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( C  <_  B  <->  -u B  <_  -u C ) )
873adant1 964 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <_  B  <->  -u B  <_  -u C ) )
9 leneg 8040 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -u C  <_  -u A ) )
1093adant2 965 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -u C  <_  -u A ) )
118, 10anbi12d 458 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  <_  B  /\  A  <_  C )  <-> 
( -u B  <_  -u C  /\  -u C  <_  -u A
) ) )
125, 11syl5bbr 193 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  C  /\  C  <_  B )  <-> 
( -u B  <_  -u C  /\  -u C  <_  -u A
) ) )
134, 12anbi12d 458 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  e.  RR  /\  ( A  <_  C  /\  C  <_  B ) )  <->  ( -u C  e.  RR  /\  ( -u B  <_  -u C  /\  -u C  <_ 
-u A ) ) ) )
14 elicc2 9504 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) ) )
15143adant3 966 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
) ) )
16 3anass 931 . . 3  |-  ( ( C  e.  RR  /\  A  <_  C  /\  C  <_  B )  <->  ( C  e.  RR  /\  ( A  <_  C  /\  C  <_  B ) ) )
1715, 16syl6bb 195 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR  /\  ( A  <_  C  /\  C  <_  B ) ) ) )
18 renegcl 7840 . . . . 5  |-  ( B  e.  RR  ->  -u B  e.  RR )
19 renegcl 7840 . . . . 5  |-  ( A  e.  RR  ->  -u A  e.  RR )
20 elicc2 9504 . . . . 5  |-  ( (
-u B  e.  RR  /\  -u A  e.  RR )  ->  ( -u C  e.  ( -u B [,] -u A )  <->  ( -u C  e.  RR  /\  -u B  <_ 
-u C  /\  -u C  <_ 
-u A ) ) )
2118, 19, 20syl2anr 285 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u C  e.  ( -u B [,] -u A )  <->  ( -u C  e.  RR  /\  -u B  <_ 
-u C  /\  -u C  <_ 
-u A ) ) )
22213adant3 966 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -u C  e.  ( -u B [,] -u A )  <->  ( -u C  e.  RR  /\  -u B  <_ 
-u C  /\  -u C  <_ 
-u A ) ) )
23 3anass 931 . . 3  |-  ( (
-u C  e.  RR  /\  -u B  <_  -u C  /\  -u C  <_  -u A
)  <->  ( -u C  e.  RR  /\  ( -u B  <_  -u C  /\  -u C  <_ 
-u A ) ) )
2422, 23syl6bb 195 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -u C  e.  ( -u B [,] -u A )  <->  ( -u C  e.  RR  /\  ( -u B  <_  -u C  /\  -u C  <_ 
-u A ) ) ) )
2513, 17, 243bitr4d 219 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A [,] B )  <->  -u C  e.  ( -u B [,] -u A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 927    e. wcel 1445   class class class wbr 3867  (class class class)co 5690   RRcr 7446    <_ cle 7620   -ucneg 7751   [,]cicc 9457
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-ltadd 7558
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-id 4144  df-po 4147  df-iso 4148  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-icc 9461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator