ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnnnn0b Unicode version

Theorem elnnnn0b 9158
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005.)
Assertion
Ref Expression
elnnnn0b  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  0  < 
N ) )

Proof of Theorem elnnnn0b
StepHypRef Expression
1 nnnn0 9121 . . 3  |-  ( N  e.  NN  ->  N  e.  NN0 )
2 nngt0 8882 . . 3  |-  ( N  e.  NN  ->  0  <  N )
31, 2jca 304 . 2  |-  ( N  e.  NN  ->  ( N  e.  NN0  /\  0  <  N ) )
4 elnn0 9116 . . . 4  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
5 ax-1 6 . . . . 5  |-  ( N  e.  NN  ->  (
0  <  N  ->  N  e.  NN ) )
6 breq2 3986 . . . . . 6  |-  ( N  =  0  ->  (
0  <  N  <->  0  <  0 ) )
7 0re 7899 . . . . . . . 8  |-  0  e.  RR
87ltnri 7991 . . . . . . 7  |-  -.  0  <  0
98pm2.21i 636 . . . . . 6  |-  ( 0  <  0  ->  N  e.  NN )
106, 9syl6bi 162 . . . . 5  |-  ( N  =  0  ->  (
0  <  N  ->  N  e.  NN ) )
115, 10jaoi 706 . . . 4  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( 0  < 
N  ->  N  e.  NN ) )
124, 11sylbi 120 . . 3  |-  ( N  e.  NN0  ->  ( 0  <  N  ->  N  e.  NN ) )
1312imp 123 . 2  |-  ( ( N  e.  NN0  /\  0  <  N )  ->  N  e.  NN )
143, 13impbii 125 1  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  0  < 
N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   class class class wbr 3982   0cc0 7753    < clt 7933   NNcn 8857   NN0cn0 9114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-iota 5153  df-fv 5196  df-ov 5845  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-inn 8858  df-n0 9115
This theorem is referenced by:  elnnnn0c  9159  bccl2  10681  bezoutlemmain  11931
  Copyright terms: Public domain W3C validator