ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axltirr Unicode version

Theorem axltirr 8154
Description: Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltirr 8052 with ordering on the extended reals. New proofs should use ltnr 8164 instead for naming consistency. (New usage is discouraged.) (Contributed by Jim Kingdon, 15-Jan-2020.)
Assertion
Ref Expression
axltirr  |-  ( A  e.  RR  ->  -.  A  <  A )

Proof of Theorem axltirr
StepHypRef Expression
1 ax-pre-ltirr 8052 . 2  |-  ( A  e.  RR  ->  -.  A  <RR  A )
2 ltxrlt 8153 . . 3  |-  ( ( A  e.  RR  /\  A  e.  RR )  ->  ( A  <  A  <->  A 
<RR  A ) )
32anidms 397 . 2  |-  ( A  e.  RR  ->  ( A  <  A  <->  A  <RR  A ) )
41, 3mtbird 675 1  |-  ( A  e.  RR  ->  -.  A  <  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    e. wcel 2177   class class class wbr 4050   RRcr 7939    <RR cltrr 7944    < clt 8122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-pre-ltirr 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-opab 4113  df-xp 4688  df-pnf 8124  df-mnf 8125  df-ltxr 8127
This theorem is referenced by:  ltnr  8164
  Copyright terms: Public domain W3C validator