ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnr Unicode version

Theorem ltnr 7616
Description: 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
Assertion
Ref Expression
ltnr  |-  ( A  e.  RR  ->  -.  A  <  A )

Proof of Theorem ltnr
StepHypRef Expression
1 axltirr 7607 1  |-  ( A  e.  RR  ->  -.  A  <  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 1439   class class class wbr 3851   RRcr 7403    < clt 7576
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7490  ax-resscn 7491  ax-pre-ltirr 7511
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-xp 4457  df-pnf 7578  df-mnf 7579  df-ltxr 7581
This theorem is referenced by:  ltso  7617  lttri3  7619  leid  7623  ltne  7624  ltnsym  7625  ltnri  7631  ltnrd  7650  reapirr  8108  reapti  8110  squeeze0  8419  zdclt  8878  xrltnr  9304
  Copyright terms: Public domain W3C validator