ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axltwlin Unicode version

Theorem axltwlin 8210
Description: Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltwlin 8108 with ordering on the extended reals. (Contributed by Jim Kingdon, 15-Jan-2020.)
Assertion
Ref Expression
axltwlin  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( A  <  C  \/  C  <  B ) ) )

Proof of Theorem axltwlin
StepHypRef Expression
1 ax-pre-ltwlin 8108 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( A  <RR  C  \/  C  <RR  B ) ) )
2 ltxrlt 8208 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )
323adant3 1041 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  A  <RR  B ) )
4 ltxrlt 8208 . . . 4  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  <  C  <->  A 
<RR  C ) )
543adant2 1040 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  C  <->  A  <RR  C ) )
6 ltxrlt 8208 . . . . 5  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  <  B  <->  C 
<RR  B ) )
76ancoms 268 . . . 4  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( C  <  B  <->  C 
<RR  B ) )
873adant1 1039 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  B  <->  C  <RR  B ) )
95, 8orbi12d 798 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  C  \/  C  <  B )  <-> 
( A  <RR  C  \/  C  <RR  B ) ) )
101, 3, 93imtr4d 203 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( A  <  C  \/  C  <  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 713    /\ w3a 1002    e. wcel 2200   class class class wbr 4082   RRcr 7994    <RR cltrr 7999    < clt 8177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-pre-ltwlin 8108
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-pnf 8179  df-mnf 8180  df-ltxr 8182
This theorem is referenced by:  ltso  8220  letr  8225  lelttr  8231  ltletr  8232  gt0add  8716  reapcotr  8741  sup3exmid  9100  xrltso  9988  rebtwn2zlemstep  10467  expnbnd  10880  leabs  11580  ltabs  11593  abslt  11594  absle  11595  maxabslemlub  11713  suplociccreex  15292  ivthinclemloc  15309  ivthdichlem  15319  cnplimclemle  15336  reeff1o  15441  efltlemlt  15442  sin0pilem2  15450  coseq0negpitopi  15504  cos02pilt1  15519
  Copyright terms: Public domain W3C validator