| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axltwlin | Unicode version | ||
| Description: Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltwlin 8037 with ordering on the extended reals. (Contributed by Jim Kingdon, 15-Jan-2020.) |
| Ref | Expression |
|---|---|
| axltwlin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pre-ltwlin 8037 |
. 2
| |
| 2 | ltxrlt 8137 |
. . 3
| |
| 3 | 2 | 3adant3 1019 |
. 2
|
| 4 | ltxrlt 8137 |
. . . 4
| |
| 5 | 4 | 3adant2 1018 |
. . 3
|
| 6 | ltxrlt 8137 |
. . . . 5
| |
| 7 | 6 | ancoms 268 |
. . . 4
|
| 8 | 7 | 3adant1 1017 |
. . 3
|
| 9 | 5, 8 | orbi12d 794 |
. 2
|
| 10 | 1, 3, 9 | 3imtr4d 203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-pre-ltwlin 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-pnf 8108 df-mnf 8109 df-ltxr 8111 |
| This theorem is referenced by: ltso 8149 letr 8154 lelttr 8160 ltletr 8161 gt0add 8645 reapcotr 8670 sup3exmid 9029 xrltso 9917 rebtwn2zlemstep 10393 expnbnd 10806 leabs 11356 ltabs 11369 abslt 11370 absle 11371 maxabslemlub 11489 suplociccreex 15067 ivthinclemloc 15084 ivthdichlem 15094 cnplimclemle 15111 reeff1o 15216 efltlemlt 15217 sin0pilem2 15225 coseq0negpitopi 15279 cos02pilt1 15294 |
| Copyright terms: Public domain | W3C validator |