Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axltwlin | Unicode version |
Description: Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltwlin 7846 with ordering on the extended reals. (Contributed by Jim Kingdon, 15-Jan-2020.) |
Ref | Expression |
---|---|
axltwlin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pre-ltwlin 7846 | . 2 | |
2 | ltxrlt 7944 | . . 3 | |
3 | 2 | 3adant3 1002 | . 2 |
4 | ltxrlt 7944 | . . . 4 | |
5 | 4 | 3adant2 1001 | . . 3 |
6 | ltxrlt 7944 | . . . . 5 | |
7 | 6 | ancoms 266 | . . . 4 |
8 | 7 | 3adant1 1000 | . . 3 |
9 | 5, 8 | orbi12d 783 | . 2 |
10 | 1, 3, 9 | 3imtr4d 202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wo 698 w3a 963 wcel 2128 class class class wbr 3966 cr 7732 cltrr 7737 clt 7913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4083 ax-pow 4136 ax-pr 4170 ax-un 4394 ax-setind 4497 ax-cnex 7824 ax-resscn 7825 ax-pre-ltwlin 7846 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-br 3967 df-opab 4027 df-xp 4593 df-pnf 7915 df-mnf 7916 df-ltxr 7918 |
This theorem is referenced by: ltso 7956 letr 7961 lelttr 7966 ltletr 7967 gt0add 8449 reapcotr 8474 sup3exmid 8829 xrltso 9704 rebtwn2zlemstep 10156 expnbnd 10545 leabs 10978 ltabs 10991 abslt 10992 absle 10993 maxabslemlub 11111 suplociccreex 13044 ivthinclemloc 13061 cnplimclemle 13079 reeff1o 13136 efltlemlt 13137 sin0pilem2 13145 coseq0negpitopi 13199 cos02pilt1 13214 |
Copyright terms: Public domain | W3C validator |