ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axltwlin Unicode version

Theorem axltwlin 8175
Description: Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltwlin 8073 with ordering on the extended reals. (Contributed by Jim Kingdon, 15-Jan-2020.)
Assertion
Ref Expression
axltwlin  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( A  <  C  \/  C  <  B ) ) )

Proof of Theorem axltwlin
StepHypRef Expression
1 ax-pre-ltwlin 8073 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( A  <RR  C  \/  C  <RR  B ) ) )
2 ltxrlt 8173 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )
323adant3 1020 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  A  <RR  B ) )
4 ltxrlt 8173 . . . 4  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  <  C  <->  A 
<RR  C ) )
543adant2 1019 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  C  <->  A  <RR  C ) )
6 ltxrlt 8173 . . . . 5  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  <  B  <->  C 
<RR  B ) )
76ancoms 268 . . . 4  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( C  <  B  <->  C 
<RR  B ) )
873adant1 1018 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  B  <->  C  <RR  B ) )
95, 8orbi12d 795 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  C  \/  C  <  B )  <-> 
( A  <RR  C  \/  C  <RR  B ) ) )
101, 3, 93imtr4d 203 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( A  <  C  \/  C  <  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 710    /\ w3a 981    e. wcel 2178   class class class wbr 4059   RRcr 7959    <RR cltrr 7964    < clt 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltwlin 8073
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-pnf 8144  df-mnf 8145  df-ltxr 8147
This theorem is referenced by:  ltso  8185  letr  8190  lelttr  8196  ltletr  8197  gt0add  8681  reapcotr  8706  sup3exmid  9065  xrltso  9953  rebtwn2zlemstep  10432  expnbnd  10845  leabs  11500  ltabs  11513  abslt  11514  absle  11515  maxabslemlub  11633  suplociccreex  15211  ivthinclemloc  15228  ivthdichlem  15238  cnplimclemle  15255  reeff1o  15360  efltlemlt  15361  sin0pilem2  15369  coseq0negpitopi  15423  cos02pilt1  15438
  Copyright terms: Public domain W3C validator