| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axltwlin | Unicode version | ||
| Description: Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltwlin 8108 with ordering on the extended reals. (Contributed by Jim Kingdon, 15-Jan-2020.) |
| Ref | Expression |
|---|---|
| axltwlin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pre-ltwlin 8108 |
. 2
| |
| 2 | ltxrlt 8208 |
. . 3
| |
| 3 | 2 | 3adant3 1041 |
. 2
|
| 4 | ltxrlt 8208 |
. . . 4
| |
| 5 | 4 | 3adant2 1040 |
. . 3
|
| 6 | ltxrlt 8208 |
. . . . 5
| |
| 7 | 6 | ancoms 268 |
. . . 4
|
| 8 | 7 | 3adant1 1039 |
. . 3
|
| 9 | 5, 8 | orbi12d 798 |
. 2
|
| 10 | 1, 3, 9 | 3imtr4d 203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-pre-ltwlin 8108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-pnf 8179 df-mnf 8180 df-ltxr 8182 |
| This theorem is referenced by: ltso 8220 letr 8225 lelttr 8231 ltletr 8232 gt0add 8716 reapcotr 8741 sup3exmid 9100 xrltso 9988 rebtwn2zlemstep 10467 expnbnd 10880 leabs 11580 ltabs 11593 abslt 11594 absle 11595 maxabslemlub 11713 suplociccreex 15292 ivthinclemloc 15309 ivthdichlem 15319 cnplimclemle 15336 reeff1o 15441 efltlemlt 15442 sin0pilem2 15450 coseq0negpitopi 15504 cos02pilt1 15519 |
| Copyright terms: Public domain | W3C validator |