Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axltwlin | Unicode version |
Description: Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltwlin 7866 with ordering on the extended reals. (Contributed by Jim Kingdon, 15-Jan-2020.) |
Ref | Expression |
---|---|
axltwlin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pre-ltwlin 7866 | . 2 | |
2 | ltxrlt 7964 | . . 3 | |
3 | 2 | 3adant3 1007 | . 2 |
4 | ltxrlt 7964 | . . . 4 | |
5 | 4 | 3adant2 1006 | . . 3 |
6 | ltxrlt 7964 | . . . . 5 | |
7 | 6 | ancoms 266 | . . . 4 |
8 | 7 | 3adant1 1005 | . . 3 |
9 | 5, 8 | orbi12d 783 | . 2 |
10 | 1, 3, 9 | 3imtr4d 202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wo 698 w3a 968 wcel 2136 class class class wbr 3982 cr 7752 cltrr 7757 clt 7933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltwlin 7866 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-pnf 7935 df-mnf 7936 df-ltxr 7938 |
This theorem is referenced by: ltso 7976 letr 7981 lelttr 7987 ltletr 7988 gt0add 8471 reapcotr 8496 sup3exmid 8852 xrltso 9732 rebtwn2zlemstep 10188 expnbnd 10578 leabs 11016 ltabs 11029 abslt 11030 absle 11031 maxabslemlub 11149 suplociccreex 13242 ivthinclemloc 13259 cnplimclemle 13277 reeff1o 13334 efltlemlt 13335 sin0pilem2 13343 coseq0negpitopi 13397 cos02pilt1 13412 |
Copyright terms: Public domain | W3C validator |