| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axltwlin | Unicode version | ||
| Description: Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltwlin 8073 with ordering on the extended reals. (Contributed by Jim Kingdon, 15-Jan-2020.) |
| Ref | Expression |
|---|---|
| axltwlin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pre-ltwlin 8073 |
. 2
| |
| 2 | ltxrlt 8173 |
. . 3
| |
| 3 | 2 | 3adant3 1020 |
. 2
|
| 4 | ltxrlt 8173 |
. . . 4
| |
| 5 | 4 | 3adant2 1019 |
. . 3
|
| 6 | ltxrlt 8173 |
. . . . 5
| |
| 7 | 6 | ancoms 268 |
. . . 4
|
| 8 | 7 | 3adant1 1018 |
. . 3
|
| 9 | 5, 8 | orbi12d 795 |
. 2
|
| 10 | 1, 3, 9 | 3imtr4d 203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltwlin 8073 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-pnf 8144 df-mnf 8145 df-ltxr 8147 |
| This theorem is referenced by: ltso 8185 letr 8190 lelttr 8196 ltletr 8197 gt0add 8681 reapcotr 8706 sup3exmid 9065 xrltso 9953 rebtwn2zlemstep 10432 expnbnd 10845 leabs 11500 ltabs 11513 abslt 11514 absle 11515 maxabslemlub 11633 suplociccreex 15211 ivthinclemloc 15228 ivthdichlem 15238 cnplimclemle 15255 reeff1o 15360 efltlemlt 15361 sin0pilem2 15369 coseq0negpitopi 15423 cos02pilt1 15438 |
| Copyright terms: Public domain | W3C validator |