ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basgen Unicode version

Theorem basgen 11947
Description: Given a topology  J, show that a subset  B satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81 using abbreviations. (Contributed by NM, 22-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
basgen  |-  ( ( J  e.  Top  /\  B  C_  J  /\  J  C_  ( topGen `  B )
)  ->  ( topGen `  B )  =  J )

Proof of Theorem basgen
StepHypRef Expression
1 tgss 11930 . . . 4  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( topGen `  B )  C_  ( topGen `  J )
)
213adant3 966 . . 3  |-  ( ( J  e.  Top  /\  B  C_  J  /\  J  C_  ( topGen `  B )
)  ->  ( topGen `  B )  C_  ( topGen `
 J ) )
3 tgtop 11935 . . . 4  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
433ad2ant1 967 . . 3  |-  ( ( J  e.  Top  /\  B  C_  J  /\  J  C_  ( topGen `  B )
)  ->  ( topGen `  J )  =  J )
52, 4sseqtrd 3077 . 2  |-  ( ( J  e.  Top  /\  B  C_  J  /\  J  C_  ( topGen `  B )
)  ->  ( topGen `  B )  C_  J
)
6 simp3 948 . 2  |-  ( ( J  e.  Top  /\  B  C_  J  /\  J  C_  ( topGen `  B )
)  ->  J  C_  ( topGen `
 B ) )
75, 6eqssd 3056 1  |-  ( ( J  e.  Top  /\  B  C_  J  /\  J  C_  ( topGen `  B )
)  ->  ( topGen `  B )  =  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 927    = wceq 1296    e. wcel 1445    C_ wss 3013   ` cfv 5049   topGenctg 11834   Topctop 11863
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-sbc 2855  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-topgen 11840  df-top 11864
This theorem is referenced by:  basgen2  11948
  Copyright terms: Public domain W3C validator