ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basgen Unicode version

Theorem basgen 14316
Description: Given a topology  J, show that a subset  B satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81 using abbreviations. (Contributed by NM, 22-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
basgen  |-  ( ( J  e.  Top  /\  B  C_  J  /\  J  C_  ( topGen `  B )
)  ->  ( topGen `  B )  =  J )

Proof of Theorem basgen
StepHypRef Expression
1 tgss 14299 . . . 4  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( topGen `  B )  C_  ( topGen `  J )
)
213adant3 1019 . . 3  |-  ( ( J  e.  Top  /\  B  C_  J  /\  J  C_  ( topGen `  B )
)  ->  ( topGen `  B )  C_  ( topGen `
 J ) )
3 tgtop 14304 . . . 4  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
433ad2ant1 1020 . . 3  |-  ( ( J  e.  Top  /\  B  C_  J  /\  J  C_  ( topGen `  B )
)  ->  ( topGen `  J )  =  J )
52, 4sseqtrd 3221 . 2  |-  ( ( J  e.  Top  /\  B  C_  J  /\  J  C_  ( topGen `  B )
)  ->  ( topGen `  B )  C_  J
)
6 simp3 1001 . 2  |-  ( ( J  e.  Top  /\  B  C_  J  /\  J  C_  ( topGen `  B )
)  ->  J  C_  ( topGen `
 B ) )
75, 6eqssd 3200 1  |-  ( ( J  e.  Top  /\  B  C_  J  /\  J  C_  ( topGen `  B )
)  ->  ( topGen `  B )  =  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2167    C_ wss 3157   ` cfv 5258   topGenctg 12925   Topctop 14233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-topgen 12931  df-top 14234
This theorem is referenced by:  basgen2  14317
  Copyright terms: Public domain W3C validator