ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzp1p1 Unicode version

Theorem eluzp1p1 9549
Description: Membership in the next upper set of integers. (Contributed by NM, 5-Oct-2005.)
Assertion
Ref Expression
eluzp1p1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )

Proof of Theorem eluzp1p1
StepHypRef Expression
1 peano2z 9285 . . . 4  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
213ad2ant1 1018 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ( M  +  1 )  e.  ZZ )
3 peano2z 9285 . . . 4  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )
433ad2ant2 1019 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ( N  +  1 )  e.  ZZ )
5 zre 9253 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  RR )
6 zre 9253 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  RR )
7 1re 7953 . . . . . 6  |-  1  e.  RR
8 leadd1 8383 . . . . . 6  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  1  e.  RR )  ->  ( M  <_  N  <->  ( M  +  1 )  <_ 
( N  +  1 ) ) )
97, 8mp3an3 1326 . . . . 5  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  <_  N  <->  ( M  +  1 )  <_  ( N  + 
1 ) ) )
105, 6, 9syl2an 289 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  ( M  +  1 )  <_  ( N  + 
1 ) ) )
1110biimp3a 1345 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ( M  +  1 )  <_  ( N  + 
1 ) )
122, 4, 113jca 1177 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  (
( M  +  1 )  e.  ZZ  /\  ( N  +  1
)  e.  ZZ  /\  ( M  +  1
)  <_  ( N  +  1 ) ) )
13 eluz2 9530 . 2  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
14 eluz2 9530 . 2  |-  ( ( N  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) )  <->  ( ( M  +  1 )  e.  ZZ  /\  ( N  +  1 )  e.  ZZ  /\  ( M  +  1 )  <_ 
( N  +  1 ) ) )
1512, 13, 143imtr4i 201 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 978    e. wcel 2148   class class class wbr 4002   ` cfv 5215  (class class class)co 5872   RRcr 7807   1c1 7809    + caddc 7811    <_ cle 7989   ZZcz 9249   ZZ>=cuz 9524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-addcom 7908  ax-addass 7910  ax-distr 7912  ax-i2m1 7913  ax-0id 7916  ax-rnegex 7917  ax-cnre 7919  ax-pre-ltadd 7924
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-sub 8126  df-neg 8127  df-inn 8916  df-n0 9173  df-z 9250  df-uz 9525
This theorem is referenced by:  uzp1  9557  fzp1elp1  10070  rebtwn2z  10250  seqvalcd  10454  seqovcd  10458  seqp1cd  10461  seq3fveq2  10464  seq3id2  10504  seq3coll  10815  serf0  11353  efcllemp  11659  prmind2  12112  pockthlem  12346  pockthg  12347  prmunb  12352  cvgcmp2nlemabs  14640
  Copyright terms: Public domain W3C validator