| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iccssre | Unicode version | ||
| Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) | 
| Ref | Expression | 
|---|---|
| iccssre | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elicc2 10013 | 
. . . . 5
 | |
| 2 | 1 | biimp3a 1356 | 
. . . 4
 | 
| 3 | 2 | simp1d 1011 | 
. . 3
 | 
| 4 | 3 | 3expia 1207 | 
. 2
 | 
| 5 | 4 | ssrdv 3189 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-icc 9970 | 
| This theorem is referenced by: iccsupr 10041 iccshftri 10070 iccshftli 10072 iccdili 10074 icccntri 10076 unitssre 10080 iccen 10081 cos12dec 11933 suplociccreex 14860 suplociccex 14861 dedekindicclemuub 14862 dedekindicclemlu 14866 dedekindicclemeu 14867 dedekindicclemicc 14868 dedekindicc 14869 reeff1olem 15007 cosz12 15016 ioocosf1o 15090 | 
| Copyright terms: Public domain | W3C validator |