ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccssre Unicode version

Theorem iccssre 10076
Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.)
Assertion
Ref Expression
iccssre  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )

Proof of Theorem iccssre
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elicc2 10059 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
21biimp3a 1357 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  x  e.  ( A [,] B
) )  ->  (
x  e.  RR  /\  A  <_  x  /\  x  <_  B ) )
32simp1d 1011 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  x  e.  ( A [,] B
) )  ->  x  e.  RR )
433expia 1207 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  ->  x  e.  RR ) )
54ssrdv 3198 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2175    C_ wss 3165   class class class wbr 4043  (class class class)co 5943   RRcr 7923    <_ cle 8107   [,]cicc 10012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-icc 10016
This theorem is referenced by:  iccsupr  10087  iccshftri  10116  iccshftli  10118  iccdili  10120  icccntri  10122  unitssre  10126  iccen  10127  cos12dec  12050  suplociccreex  15067  suplociccex  15068  dedekindicclemuub  15069  dedekindicclemlu  15073  dedekindicclemeu  15074  dedekindicclemicc  15075  dedekindicc  15076  reeff1olem  15214  cosz12  15223  ioocosf1o  15297
  Copyright terms: Public domain W3C validator