ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccssre Unicode version

Theorem iccssre 9434
Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.)
Assertion
Ref Expression
iccssre  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )

Proof of Theorem iccssre
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elicc2 9417 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
21biimp3a 1282 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  x  e.  ( A [,] B
) )  ->  (
x  e.  RR  /\  A  <_  x  /\  x  <_  B ) )
32simp1d 956 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  x  e.  ( A [,] B
) )  ->  x  e.  RR )
433expia 1146 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  ->  x  e.  RR ) )
54ssrdv 3032 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 925    e. wcel 1439    C_ wss 3000   class class class wbr 3851  (class class class)co 5666   RRcr 7410    <_ cle 7584   [,]cicc 9370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7497  ax-resscn 7498  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-id 4129  df-po 4132  df-iso 4133  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-iota 4993  df-fun 5030  df-fv 5036  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-icc 9374
This theorem is referenced by:  iccsupr  9445  iccshftri  9473  iccshftli  9475  iccdili  9477  icccntri  9479  unitssre  9483
  Copyright terms: Public domain W3C validator