| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccssre | Unicode version | ||
| Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) |
| Ref | Expression |
|---|---|
| iccssre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc2 10090 |
. . . . 5
| |
| 2 | 1 | biimp3a 1358 |
. . . 4
|
| 3 | 2 | simp1d 1012 |
. . 3
|
| 4 | 3 | 3expia 1208 |
. 2
|
| 5 | 4 | ssrdv 3203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-id 4353 df-po 4356 df-iso 4357 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-iota 5246 df-fun 5287 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-icc 10047 |
| This theorem is referenced by: iccsupr 10118 iccshftri 10147 iccshftli 10149 iccdili 10151 icccntri 10153 unitssre 10157 iccen 10158 cos12dec 12164 suplociccreex 15181 suplociccex 15182 dedekindicclemuub 15183 dedekindicclemlu 15187 dedekindicclemeu 15188 dedekindicclemicc 15189 dedekindicc 15190 reeff1olem 15328 cosz12 15337 ioocosf1o 15411 |
| Copyright terms: Public domain | W3C validator |