ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icossre Unicode version

Theorem icossre 9986
Description: A closed-below interval with real lower bound is a set of reals. (Contributed by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
icossre  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( A [,) B
)  C_  RR )

Proof of Theorem icossre
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elico2 9969 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( x  e.  ( A [,) B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <  B ) ) )
21biimp3a 1356 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  x  e.  ( A [,) B
) )  ->  (
x  e.  RR  /\  A  <_  x  /\  x  <  B ) )
32simp1d 1011 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  x  e.  ( A [,) B
) )  ->  x  e.  RR )
433expia 1207 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( x  e.  ( A [,) B )  ->  x  e.  RR ) )
54ssrdv 3176 1  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( A [,) B
)  C_  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2160    C_ wss 3144   class class class wbr 4018  (class class class)co 5897   RRcr 7841   RR*cxr 8022    < clt 8023    <_ cle 8024   [,)cico 9922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-ico 9926
This theorem is referenced by:  icoshftf1o  10023  rexico  11265  fprodge1  11682
  Copyright terms: Public domain W3C validator