ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprimeprodsq Unicode version

Theorem coprimeprodsq 12451
Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of  gcd and square. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
coprimeprodsq  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( C ^
2 )  =  ( A  x.  B )  ->  A  =  ( ( A  gcd  C
) ^ 2 ) ) )

Proof of Theorem coprimeprodsq
StepHypRef Expression
1 nn0z 9363 . . . . . . . 8  |-  ( A  e.  NN0  ->  A  e.  ZZ )
2 nn0z 9363 . . . . . . . 8  |-  ( C  e.  NN0  ->  C  e.  ZZ )
3 gcdcl 12158 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  gcd  C
)  e.  NN0 )
41, 2, 3syl2an 289 . . . . . . 7  |-  ( ( A  e.  NN0  /\  C  e.  NN0 )  -> 
( A  gcd  C
)  e.  NN0 )
543adant2 1018 . . . . . 6  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( A  gcd  C )  e. 
NN0 )
653ad2ant1 1020 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  gcd  C )  e. 
NN0 )
76nn0cnd 9321 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  gcd  C )  e.  CC )
87sqvald 10779 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  gcd  C
) ^ 2 )  =  ( ( A  gcd  C )  x.  ( A  gcd  C
) ) )
9 simp13 1031 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  C  e.  NN0 )
109nn0cnd 9321 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  C  e.  CC )
11 nn0cn 9276 . . . . . . . . . 10  |-  ( A  e.  NN0  ->  A  e.  CC )
12113ad2ant1 1020 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  A  e.  CC )
13123ad2ant1 1020 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  e.  CC )
1410, 13mulcomd 8065 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  x.  A )  =  ( A  x.  C ) )
15 simpl3 1004 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  ->  C  e.  NN0 )
1615nn0cnd 9321 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  ->  C  e.  CC )
1716sqvald 10779 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( C ^ 2 )  =  ( C  x.  C ) )
1817eqeq1d 2205 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( C ^
2 )  =  ( A  x.  B )  <-> 
( C  x.  C
)  =  ( A  x.  B ) ) )
1918biimp3a 1356 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  x.  C )  =  ( A  x.  B ) )
2014, 19oveq12d 5943 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( C  x.  A
)  gcd  ( C  x.  C ) )  =  ( ( A  x.  C )  gcd  ( A  x.  B )
) )
21 simp11 1029 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  e.  NN0 )
2221nn0zd 9463 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  e.  ZZ )
239nn0zd 9463 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  C  e.  ZZ )
24 mulgcd 12208 . . . . . . 7  |-  ( ( C  e.  NN0  /\  A  e.  ZZ  /\  C  e.  ZZ )  ->  (
( C  x.  A
)  gcd  ( C  x.  C ) )  =  ( C  x.  ( A  gcd  C ) ) )
259, 22, 23, 24syl3anc 1249 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( C  x.  A
)  gcd  ( C  x.  C ) )  =  ( C  x.  ( A  gcd  C ) ) )
26 simp12 1030 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  B  e.  ZZ )
27 mulgcd 12208 . . . . . . 7  |-  ( ( A  e.  NN0  /\  C  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  x.  C
)  gcd  ( A  x.  B ) )  =  ( A  x.  ( C  gcd  B ) ) )
2821, 23, 26, 27syl3anc 1249 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  C
)  gcd  ( A  x.  B ) )  =  ( A  x.  ( C  gcd  B ) ) )
2920, 25, 283eqtr3d 2237 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  x.  ( A  gcd  C ) )  =  ( A  x.  ( C  gcd  B ) ) )
3029oveq2d 5941 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( C  x.  ( A  gcd  C ) ) )  =  ( ( A  x.  ( A  gcd  C ) )  gcd  ( A  x.  ( C  gcd  B ) ) ) )
31 mulgcdr 12210 . . . . 5  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  ( A  gcd  C )  e. 
NN0 )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( C  x.  ( A  gcd  C ) ) )  =  ( ( A  gcd  C
)  x.  ( A  gcd  C ) ) )
3222, 23, 6, 31syl3anc 1249 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( C  x.  ( A  gcd  C ) ) )  =  ( ( A  gcd  C
)  x.  ( A  gcd  C ) ) )
336nn0zd 9463 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  gcd  C )  e.  ZZ )
34 gcdcl 12158 . . . . . . . . . 10  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( C  gcd  B
)  e.  NN0 )
352, 34sylan 283 . . . . . . . . 9  |-  ( ( C  e.  NN0  /\  B  e.  ZZ )  ->  ( C  gcd  B
)  e.  NN0 )
3635ancoms 268 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  C  e.  NN0 )  -> 
( C  gcd  B
)  e.  NN0 )
37363adant1 1017 . . . . . . 7  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  B )  e. 
NN0 )
38373ad2ant1 1020 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  gcd  B )  e. 
NN0 )
3938nn0zd 9463 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  gcd  B )  e.  ZZ )
40 mulgcd 12208 . . . . 5  |-  ( ( A  e.  NN0  /\  ( A  gcd  C )  e.  ZZ  /\  ( C  gcd  B )  e.  ZZ )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( A  x.  ( C  gcd  B ) ) )  =  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B ) ) ) )
4121, 33, 39, 40syl3anc 1249 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( A  x.  ( C  gcd  B ) ) )  =  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B ) ) ) )
4230, 32, 413eqtr3d 2237 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  gcd  C
)  x.  ( A  gcd  C ) )  =  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B ) ) ) )
4323ad2ant3 1022 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  C  e.  ZZ )
44 gcdid 12178 . . . . . . . . . . . . . 14  |-  ( C  e.  ZZ  ->  ( C  gcd  C )  =  ( abs `  C
) )
4543, 44syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  C )  =  ( abs `  C
) )
4645oveq1d 5940 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( C  gcd  C
)  gcd  B )  =  ( ( abs `  C )  gcd  B
) )
47 simp2 1000 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  B  e.  ZZ )
48 gcdabs1 12181 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( abs `  C
)  gcd  B )  =  ( C  gcd  B ) )
4943, 47, 48syl2anc 411 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( abs `  C
)  gcd  B )  =  ( C  gcd  B ) )
5046, 49eqtrd 2229 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( C  gcd  C
)  gcd  B )  =  ( C  gcd  B ) )
51 gcdass 12207 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  C  e.  ZZ  /\  B  e.  ZZ )  ->  (
( C  gcd  C
)  gcd  B )  =  ( C  gcd  ( C  gcd  B ) ) )
5243, 43, 47, 51syl3anc 1249 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( C  gcd  C
)  gcd  B )  =  ( C  gcd  ( C  gcd  B ) ) )
5343, 47gcdcomd 12166 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  B )  =  ( B  gcd  C
) )
5450, 52, 533eqtr3d 2237 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  ( C  gcd  B ) )  =  ( B  gcd  C ) )
5554oveq2d 5941 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( A  gcd  ( C  gcd  ( C  gcd  B ) ) )  =  ( A  gcd  ( B  gcd  C ) ) )
5613ad2ant1 1020 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  A  e.  ZZ )
5737nn0zd 9463 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  B )  e.  ZZ )
58 gcdass 12207 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  ( C  gcd  B )  e.  ZZ )  ->  (
( A  gcd  C
)  gcd  ( C  gcd  B ) )  =  ( A  gcd  ( C  gcd  ( C  gcd  B ) ) ) )
5956, 43, 57, 58syl3anc 1249 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( A  gcd  C
)  gcd  ( C  gcd  B ) )  =  ( A  gcd  ( C  gcd  ( C  gcd  B ) ) ) )
60 gcdass 12207 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  (
( A  gcd  B
)  gcd  C )  =  ( A  gcd  ( B  gcd  C ) ) )
6156, 47, 43, 60syl3anc 1249 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( A  gcd  B
)  gcd  C )  =  ( A  gcd  ( B  gcd  C ) ) )
6255, 59, 613eqtr4d 2239 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( A  gcd  C
)  gcd  ( C  gcd  B ) )  =  ( ( A  gcd  B )  gcd  C ) )
6362eqeq1d 2205 . . . . . . 7  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( ( A  gcd  C )  gcd  ( C  gcd  B ) )  =  1  <->  ( ( A  gcd  B )  gcd 
C )  =  1 ) )
6463biimpar 297 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( A  gcd  C )  gcd  ( C  gcd  B ) )  =  1 )
6564oveq2d 5941 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( A  x.  (
( A  gcd  C
)  gcd  ( C  gcd  B ) ) )  =  ( A  x.  1 ) )
66653adant3 1019 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B
) ) )  =  ( A  x.  1 ) )
6713mulridd 8060 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  x.  1 )  =  A )
6866, 67eqtrd 2229 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B
) ) )  =  A )
698, 42, 683eqtrrd 2234 . 2  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  =  ( ( A  gcd  C ) ^
2 ) )
70693expia 1207 1  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( C ^
2 )  =  ( A  x.  B )  ->  A  =  ( ( A  gcd  C
) ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   CCcc 7894   1c1 7897    x. cmul 7901   2c2 9058   NN0cn0 9266   ZZcz 9343   ^cexp 10647   abscabs 11179    gcd cgcd 12145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-gcd 12146
This theorem is referenced by:  coprimeprodsq2  12452  pythagtriplem6  12464
  Copyright terms: Public domain W3C validator