ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprimeprodsq Unicode version

Theorem coprimeprodsq 12395
Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of  gcd and square. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
coprimeprodsq  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( C ^
2 )  =  ( A  x.  B )  ->  A  =  ( ( A  gcd  C
) ^ 2 ) ) )

Proof of Theorem coprimeprodsq
StepHypRef Expression
1 nn0z 9337 . . . . . . . 8  |-  ( A  e.  NN0  ->  A  e.  ZZ )
2 nn0z 9337 . . . . . . . 8  |-  ( C  e.  NN0  ->  C  e.  ZZ )
3 gcdcl 12103 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  gcd  C
)  e.  NN0 )
41, 2, 3syl2an 289 . . . . . . 7  |-  ( ( A  e.  NN0  /\  C  e.  NN0 )  -> 
( A  gcd  C
)  e.  NN0 )
543adant2 1018 . . . . . 6  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( A  gcd  C )  e. 
NN0 )
653ad2ant1 1020 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  gcd  C )  e. 
NN0 )
76nn0cnd 9295 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  gcd  C )  e.  CC )
87sqvald 10741 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  gcd  C
) ^ 2 )  =  ( ( A  gcd  C )  x.  ( A  gcd  C
) ) )
9 simp13 1031 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  C  e.  NN0 )
109nn0cnd 9295 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  C  e.  CC )
11 nn0cn 9250 . . . . . . . . . 10  |-  ( A  e.  NN0  ->  A  e.  CC )
12113ad2ant1 1020 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  A  e.  CC )
13123ad2ant1 1020 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  e.  CC )
1410, 13mulcomd 8041 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  x.  A )  =  ( A  x.  C ) )
15 simpl3 1004 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  ->  C  e.  NN0 )
1615nn0cnd 9295 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  ->  C  e.  CC )
1716sqvald 10741 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( C ^ 2 )  =  ( C  x.  C ) )
1817eqeq1d 2202 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( C ^
2 )  =  ( A  x.  B )  <-> 
( C  x.  C
)  =  ( A  x.  B ) ) )
1918biimp3a 1356 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  x.  C )  =  ( A  x.  B ) )
2014, 19oveq12d 5936 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( C  x.  A
)  gcd  ( C  x.  C ) )  =  ( ( A  x.  C )  gcd  ( A  x.  B )
) )
21 simp11 1029 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  e.  NN0 )
2221nn0zd 9437 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  e.  ZZ )
239nn0zd 9437 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  C  e.  ZZ )
24 mulgcd 12153 . . . . . . 7  |-  ( ( C  e.  NN0  /\  A  e.  ZZ  /\  C  e.  ZZ )  ->  (
( C  x.  A
)  gcd  ( C  x.  C ) )  =  ( C  x.  ( A  gcd  C ) ) )
259, 22, 23, 24syl3anc 1249 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( C  x.  A
)  gcd  ( C  x.  C ) )  =  ( C  x.  ( A  gcd  C ) ) )
26 simp12 1030 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  B  e.  ZZ )
27 mulgcd 12153 . . . . . . 7  |-  ( ( A  e.  NN0  /\  C  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  x.  C
)  gcd  ( A  x.  B ) )  =  ( A  x.  ( C  gcd  B ) ) )
2821, 23, 26, 27syl3anc 1249 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  C
)  gcd  ( A  x.  B ) )  =  ( A  x.  ( C  gcd  B ) ) )
2920, 25, 283eqtr3d 2234 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  x.  ( A  gcd  C ) )  =  ( A  x.  ( C  gcd  B ) ) )
3029oveq2d 5934 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( C  x.  ( A  gcd  C ) ) )  =  ( ( A  x.  ( A  gcd  C ) )  gcd  ( A  x.  ( C  gcd  B ) ) ) )
31 mulgcdr 12155 . . . . 5  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  ( A  gcd  C )  e. 
NN0 )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( C  x.  ( A  gcd  C ) ) )  =  ( ( A  gcd  C
)  x.  ( A  gcd  C ) ) )
3222, 23, 6, 31syl3anc 1249 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( C  x.  ( A  gcd  C ) ) )  =  ( ( A  gcd  C
)  x.  ( A  gcd  C ) ) )
336nn0zd 9437 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  gcd  C )  e.  ZZ )
34 gcdcl 12103 . . . . . . . . . 10  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( C  gcd  B
)  e.  NN0 )
352, 34sylan 283 . . . . . . . . 9  |-  ( ( C  e.  NN0  /\  B  e.  ZZ )  ->  ( C  gcd  B
)  e.  NN0 )
3635ancoms 268 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  C  e.  NN0 )  -> 
( C  gcd  B
)  e.  NN0 )
37363adant1 1017 . . . . . . 7  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  B )  e. 
NN0 )
38373ad2ant1 1020 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  gcd  B )  e. 
NN0 )
3938nn0zd 9437 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  gcd  B )  e.  ZZ )
40 mulgcd 12153 . . . . 5  |-  ( ( A  e.  NN0  /\  ( A  gcd  C )  e.  ZZ  /\  ( C  gcd  B )  e.  ZZ )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( A  x.  ( C  gcd  B ) ) )  =  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B ) ) ) )
4121, 33, 39, 40syl3anc 1249 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( A  x.  ( C  gcd  B ) ) )  =  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B ) ) ) )
4230, 32, 413eqtr3d 2234 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  gcd  C
)  x.  ( A  gcd  C ) )  =  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B ) ) ) )
4323ad2ant3 1022 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  C  e.  ZZ )
44 gcdid 12123 . . . . . . . . . . . . . 14  |-  ( C  e.  ZZ  ->  ( C  gcd  C )  =  ( abs `  C
) )
4543, 44syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  C )  =  ( abs `  C
) )
4645oveq1d 5933 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( C  gcd  C
)  gcd  B )  =  ( ( abs `  C )  gcd  B
) )
47 simp2 1000 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  B  e.  ZZ )
48 gcdabs1 12126 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( abs `  C
)  gcd  B )  =  ( C  gcd  B ) )
4943, 47, 48syl2anc 411 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( abs `  C
)  gcd  B )  =  ( C  gcd  B ) )
5046, 49eqtrd 2226 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( C  gcd  C
)  gcd  B )  =  ( C  gcd  B ) )
51 gcdass 12152 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  C  e.  ZZ  /\  B  e.  ZZ )  ->  (
( C  gcd  C
)  gcd  B )  =  ( C  gcd  ( C  gcd  B ) ) )
5243, 43, 47, 51syl3anc 1249 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( C  gcd  C
)  gcd  B )  =  ( C  gcd  ( C  gcd  B ) ) )
5343, 47gcdcomd 12111 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  B )  =  ( B  gcd  C
) )
5450, 52, 533eqtr3d 2234 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  ( C  gcd  B ) )  =  ( B  gcd  C ) )
5554oveq2d 5934 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( A  gcd  ( C  gcd  ( C  gcd  B ) ) )  =  ( A  gcd  ( B  gcd  C ) ) )
5613ad2ant1 1020 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  A  e.  ZZ )
5737nn0zd 9437 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  B )  e.  ZZ )
58 gcdass 12152 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  ( C  gcd  B )  e.  ZZ )  ->  (
( A  gcd  C
)  gcd  ( C  gcd  B ) )  =  ( A  gcd  ( C  gcd  ( C  gcd  B ) ) ) )
5956, 43, 57, 58syl3anc 1249 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( A  gcd  C
)  gcd  ( C  gcd  B ) )  =  ( A  gcd  ( C  gcd  ( C  gcd  B ) ) ) )
60 gcdass 12152 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  (
( A  gcd  B
)  gcd  C )  =  ( A  gcd  ( B  gcd  C ) ) )
6156, 47, 43, 60syl3anc 1249 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( A  gcd  B
)  gcd  C )  =  ( A  gcd  ( B  gcd  C ) ) )
6255, 59, 613eqtr4d 2236 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( A  gcd  C
)  gcd  ( C  gcd  B ) )  =  ( ( A  gcd  B )  gcd  C ) )
6362eqeq1d 2202 . . . . . . 7  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( ( A  gcd  C )  gcd  ( C  gcd  B ) )  =  1  <->  ( ( A  gcd  B )  gcd 
C )  =  1 ) )
6463biimpar 297 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( A  gcd  C )  gcd  ( C  gcd  B ) )  =  1 )
6564oveq2d 5934 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( A  x.  (
( A  gcd  C
)  gcd  ( C  gcd  B ) ) )  =  ( A  x.  1 ) )
66653adant3 1019 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B
) ) )  =  ( A  x.  1 ) )
6713mulridd 8036 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  x.  1 )  =  A )
6866, 67eqtrd 2226 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B
) ) )  =  A )
698, 42, 683eqtrrd 2231 . 2  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  =  ( ( A  gcd  C ) ^
2 ) )
70693expia 1207 1  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( C ^
2 )  =  ( A  x.  B )  ->  A  =  ( ( A  gcd  C
) ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   CCcc 7870   1c1 7873    x. cmul 7877   2c2 9033   NN0cn0 9240   ZZcz 9317   ^cexp 10609   abscabs 11141    gcd cgcd 12079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080
This theorem is referenced by:  coprimeprodsq2  12396  pythagtriplem6  12408
  Copyright terms: Public domain W3C validator