ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprimeprodsq Unicode version

Theorem coprimeprodsq 12780
Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of  gcd and square. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
coprimeprodsq  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( C ^
2 )  =  ( A  x.  B )  ->  A  =  ( ( A  gcd  C
) ^ 2 ) ) )

Proof of Theorem coprimeprodsq
StepHypRef Expression
1 nn0z 9466 . . . . . . . 8  |-  ( A  e.  NN0  ->  A  e.  ZZ )
2 nn0z 9466 . . . . . . . 8  |-  ( C  e.  NN0  ->  C  e.  ZZ )
3 gcdcl 12487 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  gcd  C
)  e.  NN0 )
41, 2, 3syl2an 289 . . . . . . 7  |-  ( ( A  e.  NN0  /\  C  e.  NN0 )  -> 
( A  gcd  C
)  e.  NN0 )
543adant2 1040 . . . . . 6  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( A  gcd  C )  e. 
NN0 )
653ad2ant1 1042 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  gcd  C )  e. 
NN0 )
76nn0cnd 9424 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  gcd  C )  e.  CC )
87sqvald 10892 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  gcd  C
) ^ 2 )  =  ( ( A  gcd  C )  x.  ( A  gcd  C
) ) )
9 simp13 1053 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  C  e.  NN0 )
109nn0cnd 9424 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  C  e.  CC )
11 nn0cn 9379 . . . . . . . . . 10  |-  ( A  e.  NN0  ->  A  e.  CC )
12113ad2ant1 1042 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  A  e.  CC )
13123ad2ant1 1042 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  e.  CC )
1410, 13mulcomd 8168 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  x.  A )  =  ( A  x.  C ) )
15 simpl3 1026 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  ->  C  e.  NN0 )
1615nn0cnd 9424 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  ->  C  e.  CC )
1716sqvald 10892 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( C ^ 2 )  =  ( C  x.  C ) )
1817eqeq1d 2238 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( C ^
2 )  =  ( A  x.  B )  <-> 
( C  x.  C
)  =  ( A  x.  B ) ) )
1918biimp3a 1379 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  x.  C )  =  ( A  x.  B ) )
2014, 19oveq12d 6019 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( C  x.  A
)  gcd  ( C  x.  C ) )  =  ( ( A  x.  C )  gcd  ( A  x.  B )
) )
21 simp11 1051 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  e.  NN0 )
2221nn0zd 9567 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  e.  ZZ )
239nn0zd 9567 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  C  e.  ZZ )
24 mulgcd 12537 . . . . . . 7  |-  ( ( C  e.  NN0  /\  A  e.  ZZ  /\  C  e.  ZZ )  ->  (
( C  x.  A
)  gcd  ( C  x.  C ) )  =  ( C  x.  ( A  gcd  C ) ) )
259, 22, 23, 24syl3anc 1271 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( C  x.  A
)  gcd  ( C  x.  C ) )  =  ( C  x.  ( A  gcd  C ) ) )
26 simp12 1052 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  B  e.  ZZ )
27 mulgcd 12537 . . . . . . 7  |-  ( ( A  e.  NN0  /\  C  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  x.  C
)  gcd  ( A  x.  B ) )  =  ( A  x.  ( C  gcd  B ) ) )
2821, 23, 26, 27syl3anc 1271 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  C
)  gcd  ( A  x.  B ) )  =  ( A  x.  ( C  gcd  B ) ) )
2920, 25, 283eqtr3d 2270 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  x.  ( A  gcd  C ) )  =  ( A  x.  ( C  gcd  B ) ) )
3029oveq2d 6017 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( C  x.  ( A  gcd  C ) ) )  =  ( ( A  x.  ( A  gcd  C ) )  gcd  ( A  x.  ( C  gcd  B ) ) ) )
31 mulgcdr 12539 . . . . 5  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  ( A  gcd  C )  e. 
NN0 )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( C  x.  ( A  gcd  C ) ) )  =  ( ( A  gcd  C
)  x.  ( A  gcd  C ) ) )
3222, 23, 6, 31syl3anc 1271 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( C  x.  ( A  gcd  C ) ) )  =  ( ( A  gcd  C
)  x.  ( A  gcd  C ) ) )
336nn0zd 9567 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  gcd  C )  e.  ZZ )
34 gcdcl 12487 . . . . . . . . . 10  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( C  gcd  B
)  e.  NN0 )
352, 34sylan 283 . . . . . . . . 9  |-  ( ( C  e.  NN0  /\  B  e.  ZZ )  ->  ( C  gcd  B
)  e.  NN0 )
3635ancoms 268 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  C  e.  NN0 )  -> 
( C  gcd  B
)  e.  NN0 )
37363adant1 1039 . . . . . . 7  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  B )  e. 
NN0 )
38373ad2ant1 1042 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  gcd  B )  e. 
NN0 )
3938nn0zd 9567 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  gcd  B )  e.  ZZ )
40 mulgcd 12537 . . . . 5  |-  ( ( A  e.  NN0  /\  ( A  gcd  C )  e.  ZZ  /\  ( C  gcd  B )  e.  ZZ )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( A  x.  ( C  gcd  B ) ) )  =  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B ) ) ) )
4121, 33, 39, 40syl3anc 1271 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( A  x.  ( C  gcd  B ) ) )  =  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B ) ) ) )
4230, 32, 413eqtr3d 2270 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  gcd  C
)  x.  ( A  gcd  C ) )  =  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B ) ) ) )
4323ad2ant3 1044 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  C  e.  ZZ )
44 gcdid 12507 . . . . . . . . . . . . . 14  |-  ( C  e.  ZZ  ->  ( C  gcd  C )  =  ( abs `  C
) )
4543, 44syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  C )  =  ( abs `  C
) )
4645oveq1d 6016 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( C  gcd  C
)  gcd  B )  =  ( ( abs `  C )  gcd  B
) )
47 simp2 1022 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  B  e.  ZZ )
48 gcdabs1 12510 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( abs `  C
)  gcd  B )  =  ( C  gcd  B ) )
4943, 47, 48syl2anc 411 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( abs `  C
)  gcd  B )  =  ( C  gcd  B ) )
5046, 49eqtrd 2262 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( C  gcd  C
)  gcd  B )  =  ( C  gcd  B ) )
51 gcdass 12536 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  C  e.  ZZ  /\  B  e.  ZZ )  ->  (
( C  gcd  C
)  gcd  B )  =  ( C  gcd  ( C  gcd  B ) ) )
5243, 43, 47, 51syl3anc 1271 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( C  gcd  C
)  gcd  B )  =  ( C  gcd  ( C  gcd  B ) ) )
5343, 47gcdcomd 12495 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  B )  =  ( B  gcd  C
) )
5450, 52, 533eqtr3d 2270 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  ( C  gcd  B ) )  =  ( B  gcd  C ) )
5554oveq2d 6017 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( A  gcd  ( C  gcd  ( C  gcd  B ) ) )  =  ( A  gcd  ( B  gcd  C ) ) )
5613ad2ant1 1042 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  A  e.  ZZ )
5737nn0zd 9567 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  B )  e.  ZZ )
58 gcdass 12536 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  ( C  gcd  B )  e.  ZZ )  ->  (
( A  gcd  C
)  gcd  ( C  gcd  B ) )  =  ( A  gcd  ( C  gcd  ( C  gcd  B ) ) ) )
5956, 43, 57, 58syl3anc 1271 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( A  gcd  C
)  gcd  ( C  gcd  B ) )  =  ( A  gcd  ( C  gcd  ( C  gcd  B ) ) ) )
60 gcdass 12536 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  (
( A  gcd  B
)  gcd  C )  =  ( A  gcd  ( B  gcd  C ) ) )
6156, 47, 43, 60syl3anc 1271 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( A  gcd  B
)  gcd  C )  =  ( A  gcd  ( B  gcd  C ) ) )
6255, 59, 613eqtr4d 2272 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( A  gcd  C
)  gcd  ( C  gcd  B ) )  =  ( ( A  gcd  B )  gcd  C ) )
6362eqeq1d 2238 . . . . . . 7  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( ( A  gcd  C )  gcd  ( C  gcd  B ) )  =  1  <->  ( ( A  gcd  B )  gcd 
C )  =  1 ) )
6463biimpar 297 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( A  gcd  C )  gcd  ( C  gcd  B ) )  =  1 )
6564oveq2d 6017 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( A  x.  (
( A  gcd  C
)  gcd  ( C  gcd  B ) ) )  =  ( A  x.  1 ) )
66653adant3 1041 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B
) ) )  =  ( A  x.  1 ) )
6713mulridd 8163 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  x.  1 )  =  A )
6866, 67eqtrd 2262 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B
) ) )  =  A )
698, 42, 683eqtrrd 2267 . 2  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  =  ( ( A  gcd  C ) ^
2 ) )
70693expia 1229 1  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( C ^
2 )  =  ( A  x.  B )  ->  A  =  ( ( A  gcd  C
) ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   CCcc 7997   1c1 8000    x. cmul 8004   2c2 9161   NN0cn0 9369   ZZcz 9446   ^cexp 10760   abscabs 11508    gcd cgcd 12474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-sup 7151  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-gcd 12475
This theorem is referenced by:  coprimeprodsq2  12781  pythagtriplem6  12793
  Copyright terms: Public domain W3C validator