ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprimeprodsq Unicode version

Theorem coprimeprodsq 12211
Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of  gcd and square. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
coprimeprodsq  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( C ^
2 )  =  ( A  x.  B )  ->  A  =  ( ( A  gcd  C
) ^ 2 ) ) )

Proof of Theorem coprimeprodsq
StepHypRef Expression
1 nn0z 9232 . . . . . . . 8  |-  ( A  e.  NN0  ->  A  e.  ZZ )
2 nn0z 9232 . . . . . . . 8  |-  ( C  e.  NN0  ->  C  e.  ZZ )
3 gcdcl 11921 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  gcd  C
)  e.  NN0 )
41, 2, 3syl2an 287 . . . . . . 7  |-  ( ( A  e.  NN0  /\  C  e.  NN0 )  -> 
( A  gcd  C
)  e.  NN0 )
543adant2 1011 . . . . . 6  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( A  gcd  C )  e. 
NN0 )
653ad2ant1 1013 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  gcd  C )  e. 
NN0 )
76nn0cnd 9190 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  gcd  C )  e.  CC )
87sqvald 10606 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  gcd  C
) ^ 2 )  =  ( ( A  gcd  C )  x.  ( A  gcd  C
) ) )
9 simp13 1024 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  C  e.  NN0 )
109nn0cnd 9190 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  C  e.  CC )
11 nn0cn 9145 . . . . . . . . . 10  |-  ( A  e.  NN0  ->  A  e.  CC )
12113ad2ant1 1013 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  A  e.  CC )
13123ad2ant1 1013 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  e.  CC )
1410, 13mulcomd 7941 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  x.  A )  =  ( A  x.  C ) )
15 simpl3 997 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  ->  C  e.  NN0 )
1615nn0cnd 9190 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  ->  C  e.  CC )
1716sqvald 10606 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( C ^ 2 )  =  ( C  x.  C ) )
1817eqeq1d 2179 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( C ^
2 )  =  ( A  x.  B )  <-> 
( C  x.  C
)  =  ( A  x.  B ) ) )
1918biimp3a 1340 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  x.  C )  =  ( A  x.  B ) )
2014, 19oveq12d 5871 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( C  x.  A
)  gcd  ( C  x.  C ) )  =  ( ( A  x.  C )  gcd  ( A  x.  B )
) )
21 simp11 1022 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  e.  NN0 )
2221nn0zd 9332 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  e.  ZZ )
239nn0zd 9332 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  C  e.  ZZ )
24 mulgcd 11971 . . . . . . 7  |-  ( ( C  e.  NN0  /\  A  e.  ZZ  /\  C  e.  ZZ )  ->  (
( C  x.  A
)  gcd  ( C  x.  C ) )  =  ( C  x.  ( A  gcd  C ) ) )
259, 22, 23, 24syl3anc 1233 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( C  x.  A
)  gcd  ( C  x.  C ) )  =  ( C  x.  ( A  gcd  C ) ) )
26 simp12 1023 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  B  e.  ZZ )
27 mulgcd 11971 . . . . . . 7  |-  ( ( A  e.  NN0  /\  C  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  x.  C
)  gcd  ( A  x.  B ) )  =  ( A  x.  ( C  gcd  B ) ) )
2821, 23, 26, 27syl3anc 1233 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  C
)  gcd  ( A  x.  B ) )  =  ( A  x.  ( C  gcd  B ) ) )
2920, 25, 283eqtr3d 2211 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  x.  ( A  gcd  C ) )  =  ( A  x.  ( C  gcd  B ) ) )
3029oveq2d 5869 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( C  x.  ( A  gcd  C ) ) )  =  ( ( A  x.  ( A  gcd  C ) )  gcd  ( A  x.  ( C  gcd  B ) ) ) )
31 mulgcdr 11973 . . . . 5  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  ( A  gcd  C )  e. 
NN0 )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( C  x.  ( A  gcd  C ) ) )  =  ( ( A  gcd  C
)  x.  ( A  gcd  C ) ) )
3222, 23, 6, 31syl3anc 1233 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( C  x.  ( A  gcd  C ) ) )  =  ( ( A  gcd  C
)  x.  ( A  gcd  C ) ) )
336nn0zd 9332 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  gcd  C )  e.  ZZ )
34 gcdcl 11921 . . . . . . . . . 10  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( C  gcd  B
)  e.  NN0 )
352, 34sylan 281 . . . . . . . . 9  |-  ( ( C  e.  NN0  /\  B  e.  ZZ )  ->  ( C  gcd  B
)  e.  NN0 )
3635ancoms 266 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  C  e.  NN0 )  -> 
( C  gcd  B
)  e.  NN0 )
37363adant1 1010 . . . . . . 7  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  B )  e. 
NN0 )
38373ad2ant1 1013 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  gcd  B )  e. 
NN0 )
3938nn0zd 9332 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  gcd  B )  e.  ZZ )
40 mulgcd 11971 . . . . 5  |-  ( ( A  e.  NN0  /\  ( A  gcd  C )  e.  ZZ  /\  ( C  gcd  B )  e.  ZZ )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( A  x.  ( C  gcd  B ) ) )  =  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B ) ) ) )
4121, 33, 39, 40syl3anc 1233 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( A  x.  ( C  gcd  B ) ) )  =  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B ) ) ) )
4230, 32, 413eqtr3d 2211 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  gcd  C
)  x.  ( A  gcd  C ) )  =  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B ) ) ) )
4323ad2ant3 1015 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  C  e.  ZZ )
44 gcdid 11941 . . . . . . . . . . . . . 14  |-  ( C  e.  ZZ  ->  ( C  gcd  C )  =  ( abs `  C
) )
4543, 44syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  C )  =  ( abs `  C
) )
4645oveq1d 5868 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( C  gcd  C
)  gcd  B )  =  ( ( abs `  C )  gcd  B
) )
47 simp2 993 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  B  e.  ZZ )
48 gcdabs1 11944 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( abs `  C
)  gcd  B )  =  ( C  gcd  B ) )
4943, 47, 48syl2anc 409 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( abs `  C
)  gcd  B )  =  ( C  gcd  B ) )
5046, 49eqtrd 2203 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( C  gcd  C
)  gcd  B )  =  ( C  gcd  B ) )
51 gcdass 11970 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  C  e.  ZZ  /\  B  e.  ZZ )  ->  (
( C  gcd  C
)  gcd  B )  =  ( C  gcd  ( C  gcd  B ) ) )
5243, 43, 47, 51syl3anc 1233 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( C  gcd  C
)  gcd  B )  =  ( C  gcd  ( C  gcd  B ) ) )
5343, 47gcdcomd 11929 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  B )  =  ( B  gcd  C
) )
5450, 52, 533eqtr3d 2211 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  ( C  gcd  B ) )  =  ( B  gcd  C ) )
5554oveq2d 5869 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( A  gcd  ( C  gcd  ( C  gcd  B ) ) )  =  ( A  gcd  ( B  gcd  C ) ) )
5613ad2ant1 1013 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  A  e.  ZZ )
5737nn0zd 9332 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  B )  e.  ZZ )
58 gcdass 11970 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  ( C  gcd  B )  e.  ZZ )  ->  (
( A  gcd  C
)  gcd  ( C  gcd  B ) )  =  ( A  gcd  ( C  gcd  ( C  gcd  B ) ) ) )
5956, 43, 57, 58syl3anc 1233 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( A  gcd  C
)  gcd  ( C  gcd  B ) )  =  ( A  gcd  ( C  gcd  ( C  gcd  B ) ) ) )
60 gcdass 11970 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  (
( A  gcd  B
)  gcd  C )  =  ( A  gcd  ( B  gcd  C ) ) )
6156, 47, 43, 60syl3anc 1233 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( A  gcd  B
)  gcd  C )  =  ( A  gcd  ( B  gcd  C ) ) )
6255, 59, 613eqtr4d 2213 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( A  gcd  C
)  gcd  ( C  gcd  B ) )  =  ( ( A  gcd  B )  gcd  C ) )
6362eqeq1d 2179 . . . . . . 7  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( ( A  gcd  C )  gcd  ( C  gcd  B ) )  =  1  <->  ( ( A  gcd  B )  gcd 
C )  =  1 ) )
6463biimpar 295 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( A  gcd  C )  gcd  ( C  gcd  B ) )  =  1 )
6564oveq2d 5869 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( A  x.  (
( A  gcd  C
)  gcd  ( C  gcd  B ) ) )  =  ( A  x.  1 ) )
66653adant3 1012 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B
) ) )  =  ( A  x.  1 ) )
6713mulid1d 7937 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  x.  1 )  =  A )
6866, 67eqtrd 2203 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B
) ) )  =  A )
698, 42, 683eqtrrd 2208 . 2  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  =  ( ( A  gcd  C ) ^
2 ) )
70693expia 1200 1  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( C ^
2 )  =  ( A  x.  B )  ->  A  =  ( ( A  gcd  C
) ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   ` cfv 5198  (class class class)co 5853   CCcc 7772   1c1 7775    x. cmul 7779   2c2 8929   NN0cn0 9135   ZZcz 9212   ^cexp 10475   abscabs 10961    gcd cgcd 11897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898
This theorem is referenced by:  coprimeprodsq2  12212  pythagtriplem6  12224
  Copyright terms: Public domain W3C validator