ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnawordex Unicode version

Theorem nnawordex 6587
Description: Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnawordex  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  E. x  e.  om  ( A  +o  x )  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem nnawordex
StepHypRef Expression
1 nntri3or 6551 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
213adant3 1019 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A )
)
3 nnaordex 6586 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
4 simpr 110 . . . . . . . 8  |-  ( (
(/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  ( A  +o  x )  =  B )
54reximi 2594 . . . . . . 7  |-  ( E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  B )  ->  E. x  e.  om  ( A  +o  x )  =  B )
63, 5biimtrdi 163 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  E. x  e.  om  ( A  +o  x
)  =  B ) )
763adant3 1019 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  ( A  e.  B  ->  E. x  e.  om  ( A  +o  x )  =  B ) )
8 nna0 6532 . . . . . . . 8  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
983ad2ant1 1020 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  ( A  +o  (/) )  =  A )
10 eqeq2 2206 . . . . . . 7  |-  ( A  =  B  ->  (
( A  +o  (/) )  =  A  <->  ( A  +o  (/) )  =  B ) )
119, 10syl5ibcom 155 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  ( A  =  B  ->  ( A  +o  (/) )  =  B ) )
12 peano1 4630 . . . . . . 7  |-  (/)  e.  om
13 oveq2 5930 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( A  +o  x )  =  ( A  +o  (/) ) )
1413eqeq1d 2205 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( A  +o  x )  =  B  <->  ( A  +o  (/) )  =  B ) )
1514rspcev 2868 . . . . . . 7  |-  ( (
(/)  e.  om  /\  ( A  +o  (/) )  =  B )  ->  E. x  e.  om  ( A  +o  x )  =  B )
1612, 15mpan 424 . . . . . 6  |-  ( ( A  +o  (/) )  =  B  ->  E. x  e.  om  ( A  +o  x )  =  B )
1711, 16syl6 33 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  ( A  =  B  ->  E. x  e.  om  ( A  +o  x )  =  B ) )
18 nntri1 6554 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
1918biimp3a 1356 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  -.  B  e.  A )
2019pm2.21d 620 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  ( B  e.  A  ->  E. x  e.  om  ( A  +o  x )  =  B ) )
217, 17, 203jaod 1315 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  (
( A  e.  B  \/  A  =  B  \/  B  e.  A
)  ->  E. x  e.  om  ( A  +o  x )  =  B ) )
222, 21mpd 13 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  E. x  e.  om  ( A  +o  x )  =  B )
23223expia 1207 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  ->  E. x  e.  om  ( A  +o  x
)  =  B ) )
24 nnaword1 6571 . . . . 5  |-  ( ( A  e.  om  /\  x  e.  om )  ->  A  C_  ( A  +o  x ) )
25 sseq2 3207 . . . . 5  |-  ( ( A  +o  x )  =  B  ->  ( A  C_  ( A  +o  x )  <->  A  C_  B
) )
2624, 25syl5ibcom 155 . . . 4  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( A  +o  x )  =  B  ->  A  C_  B
) )
2726rexlimdva 2614 . . 3  |-  ( A  e.  om  ->  ( E. x  e.  om  ( A  +o  x
)  =  B  ->  A  C_  B ) )
2827adantr 276 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( E. x  e. 
om  ( A  +o  x )  =  B  ->  A  C_  B
) )
2923, 28impbid 129 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  E. x  e.  om  ( A  +o  x )  =  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476    C_ wss 3157   (/)c0 3450   omcom 4626  (class class class)co 5922    +o coa 6471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478
This theorem is referenced by:  prarloclemn  7566
  Copyright terms: Public domain W3C validator