ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnawordex Unicode version

Theorem nnawordex 6496
Description: Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnawordex  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  E. x  e.  om  ( A  +o  x )  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem nnawordex
StepHypRef Expression
1 nntri3or 6461 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
213adant3 1007 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A )
)
3 nnaordex 6495 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
4 simpr 109 . . . . . . . 8  |-  ( (
(/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  ( A  +o  x )  =  B )
54reximi 2563 . . . . . . 7  |-  ( E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  B )  ->  E. x  e.  om  ( A  +o  x )  =  B )
63, 5syl6bi 162 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  E. x  e.  om  ( A  +o  x
)  =  B ) )
763adant3 1007 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  ( A  e.  B  ->  E. x  e.  om  ( A  +o  x )  =  B ) )
8 nna0 6442 . . . . . . . 8  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
983ad2ant1 1008 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  ( A  +o  (/) )  =  A )
10 eqeq2 2175 . . . . . . 7  |-  ( A  =  B  ->  (
( A  +o  (/) )  =  A  <->  ( A  +o  (/) )  =  B ) )
119, 10syl5ibcom 154 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  ( A  =  B  ->  ( A  +o  (/) )  =  B ) )
12 peano1 4571 . . . . . . 7  |-  (/)  e.  om
13 oveq2 5850 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( A  +o  x )  =  ( A  +o  (/) ) )
1413eqeq1d 2174 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( A  +o  x )  =  B  <->  ( A  +o  (/) )  =  B ) )
1514rspcev 2830 . . . . . . 7  |-  ( (
(/)  e.  om  /\  ( A  +o  (/) )  =  B )  ->  E. x  e.  om  ( A  +o  x )  =  B )
1612, 15mpan 421 . . . . . 6  |-  ( ( A  +o  (/) )  =  B  ->  E. x  e.  om  ( A  +o  x )  =  B )
1711, 16syl6 33 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  ( A  =  B  ->  E. x  e.  om  ( A  +o  x )  =  B ) )
18 nntri1 6464 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
1918biimp3a 1335 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  -.  B  e.  A )
2019pm2.21d 609 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  ( B  e.  A  ->  E. x  e.  om  ( A  +o  x )  =  B ) )
217, 17, 203jaod 1294 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  (
( A  e.  B  \/  A  =  B  \/  B  e.  A
)  ->  E. x  e.  om  ( A  +o  x )  =  B ) )
222, 21mpd 13 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  E. x  e.  om  ( A  +o  x )  =  B )
23223expia 1195 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  ->  E. x  e.  om  ( A  +o  x
)  =  B ) )
24 nnaword1 6481 . . . . 5  |-  ( ( A  e.  om  /\  x  e.  om )  ->  A  C_  ( A  +o  x ) )
25 sseq2 3166 . . . . 5  |-  ( ( A  +o  x )  =  B  ->  ( A  C_  ( A  +o  x )  <->  A  C_  B
) )
2624, 25syl5ibcom 154 . . . 4  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( A  +o  x )  =  B  ->  A  C_  B
) )
2726rexlimdva 2583 . . 3  |-  ( A  e.  om  ->  ( E. x  e.  om  ( A  +o  x
)  =  B  ->  A  C_  B ) )
2827adantr 274 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( E. x  e. 
om  ( A  +o  x )  =  B  ->  A  C_  B
) )
2923, 28impbid 128 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  E. x  e.  om  ( A  +o  x )  =  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 967    /\ w3a 968    = wceq 1343    e. wcel 2136   E.wrex 2445    C_ wss 3116   (/)c0 3409   omcom 4567  (class class class)co 5842    +o coa 6381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388
This theorem is referenced by:  prarloclemn  7440
  Copyright terms: Public domain W3C validator