ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnawordex Unicode version

Theorem nnawordex 6638
Description: Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnawordex  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  E. x  e.  om  ( A  +o  x )  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem nnawordex
StepHypRef Expression
1 nntri3or 6602 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
213adant3 1020 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A )
)
3 nnaordex 6637 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
4 simpr 110 . . . . . . . 8  |-  ( (
(/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  ( A  +o  x )  =  B )
54reximi 2605 . . . . . . 7  |-  ( E. x  e.  om  ( (/) 
e.  x  /\  ( A  +o  x )  =  B )  ->  E. x  e.  om  ( A  +o  x )  =  B )
63, 5biimtrdi 163 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  E. x  e.  om  ( A  +o  x
)  =  B ) )
763adant3 1020 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  ( A  e.  B  ->  E. x  e.  om  ( A  +o  x )  =  B ) )
8 nna0 6583 . . . . . . . 8  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
983ad2ant1 1021 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  ( A  +o  (/) )  =  A )
10 eqeq2 2217 . . . . . . 7  |-  ( A  =  B  ->  (
( A  +o  (/) )  =  A  <->  ( A  +o  (/) )  =  B ) )
119, 10syl5ibcom 155 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  ( A  =  B  ->  ( A  +o  (/) )  =  B ) )
12 peano1 4660 . . . . . . 7  |-  (/)  e.  om
13 oveq2 5975 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( A  +o  x )  =  ( A  +o  (/) ) )
1413eqeq1d 2216 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( A  +o  x )  =  B  <->  ( A  +o  (/) )  =  B ) )
1514rspcev 2884 . . . . . . 7  |-  ( (
(/)  e.  om  /\  ( A  +o  (/) )  =  B )  ->  E. x  e.  om  ( A  +o  x )  =  B )
1612, 15mpan 424 . . . . . 6  |-  ( ( A  +o  (/) )  =  B  ->  E. x  e.  om  ( A  +o  x )  =  B )
1711, 16syl6 33 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  ( A  =  B  ->  E. x  e.  om  ( A  +o  x )  =  B ) )
18 nntri1 6605 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
1918biimp3a 1358 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  -.  B  e.  A )
2019pm2.21d 620 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  ( B  e.  A  ->  E. x  e.  om  ( A  +o  x )  =  B ) )
217, 17, 203jaod 1317 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  (
( A  e.  B  \/  A  =  B  \/  B  e.  A
)  ->  E. x  e.  om  ( A  +o  x )  =  B ) )
222, 21mpd 13 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  A  C_  B )  ->  E. x  e.  om  ( A  +o  x )  =  B )
23223expia 1208 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  ->  E. x  e.  om  ( A  +o  x
)  =  B ) )
24 nnaword1 6622 . . . . 5  |-  ( ( A  e.  om  /\  x  e.  om )  ->  A  C_  ( A  +o  x ) )
25 sseq2 3225 . . . . 5  |-  ( ( A  +o  x )  =  B  ->  ( A  C_  ( A  +o  x )  <->  A  C_  B
) )
2624, 25syl5ibcom 155 . . . 4  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( ( A  +o  x )  =  B  ->  A  C_  B
) )
2726rexlimdva 2625 . . 3  |-  ( A  e.  om  ->  ( E. x  e.  om  ( A  +o  x
)  =  B  ->  A  C_  B ) )
2827adantr 276 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( E. x  e. 
om  ( A  +o  x )  =  B  ->  A  C_  B
) )
2923, 28impbid 129 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  E. x  e.  om  ( A  +o  x )  =  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 980    /\ w3a 981    = wceq 1373    e. wcel 2178   E.wrex 2487    C_ wss 3174   (/)c0 3468   omcom 4656  (class class class)co 5967    +o coa 6522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-oadd 6529
This theorem is referenced by:  prarloclemn  7647
  Copyright terms: Public domain W3C validator