ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subfzo0 Unicode version

Theorem subfzo0 10393
Description: The difference between two elements in a half-open range of nonnegative integers is greater than the negation of the upper bound and less than the upper bound of the range. (Contributed by AV, 20-Mar-2021.)
Assertion
Ref Expression
subfzo0  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N ) )  ->  ( -u N  <  ( I  -  J
)  /\  ( I  -  J )  <  N
) )

Proof of Theorem subfzo0
StepHypRef Expression
1 elfzo0 10328 . . 3  |-  ( I  e.  ( 0..^ N )  <->  ( I  e. 
NN0  /\  N  e.  NN  /\  I  <  N
) )
2 elfzo0 10328 . . . . 5  |-  ( J  e.  ( 0..^ N )  <->  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )
3 nn0re 9324 . . . . . . . . . . . 12  |-  ( I  e.  NN0  ->  I  e.  RR )
43adantr 276 . . . . . . . . . . 11  |-  ( ( I  e.  NN0  /\  I  <  N )  ->  I  e.  RR )
5 nnre 9063 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  RR )
6 nn0re 9324 . . . . . . . . . . . . . 14  |-  ( J  e.  NN0  ->  J  e.  RR )
7 resubcl 8356 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  J  e.  RR )  ->  ( N  -  J
)  e.  RR )
85, 6, 7syl2an 289 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  J  e.  NN0 )  -> 
( N  -  J
)  e.  RR )
98ancoms 268 . . . . . . . . . . . 12  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  ( N  -  J
)  e.  RR )
1093adant3 1020 . . . . . . . . . . 11  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  ( N  -  J )  e.  RR )
114, 10anim12i 338 . . . . . . . . . 10  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
I  e.  RR  /\  ( N  -  J
)  e.  RR ) )
12 nn0ge0 9340 . . . . . . . . . . . 12  |-  ( I  e.  NN0  ->  0  <_  I )
1312adantr 276 . . . . . . . . . . 11  |-  ( ( I  e.  NN0  /\  I  <  N )  -> 
0  <_  I )
14 posdif 8548 . . . . . . . . . . . . 13  |-  ( ( J  e.  RR  /\  N  e.  RR )  ->  ( J  <  N  <->  0  <  ( N  -  J ) ) )
156, 5, 14syl2an 289 . . . . . . . . . . . 12  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  ( J  <  N  <->  0  <  ( N  -  J ) ) )
1615biimp3a 1358 . . . . . . . . . . 11  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  0  <  ( N  -  J
) )
1713, 16anim12i 338 . . . . . . . . . 10  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
0  <_  I  /\  0  <  ( N  -  J ) ) )
18 addgegt0 8542 . . . . . . . . . 10  |-  ( ( ( I  e.  RR  /\  ( N  -  J
)  e.  RR )  /\  ( 0  <_  I  /\  0  <  ( N  -  J )
) )  ->  0  <  ( I  +  ( N  -  J ) ) )
1911, 17, 18syl2anc 411 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  0  <  ( I  +  ( N  -  J ) ) )
20 nn0cn 9325 . . . . . . . . . . . 12  |-  ( I  e.  NN0  ->  I  e.  CC )
2120adantr 276 . . . . . . . . . . 11  |-  ( ( I  e.  NN0  /\  I  <  N )  ->  I  e.  CC )
2221adantr 276 . . . . . . . . . 10  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  I  e.  CC )
23 nn0cn 9325 . . . . . . . . . . . 12  |-  ( J  e.  NN0  ->  J  e.  CC )
24233ad2ant1 1021 . . . . . . . . . . 11  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  J  e.  CC )
2524adantl 277 . . . . . . . . . 10  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  J  e.  CC )
26 nncn 9064 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  CC )
27263ad2ant2 1022 . . . . . . . . . . 11  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  N  e.  CC )
2827adantl 277 . . . . . . . . . 10  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  N  e.  CC )
2922, 25, 28subadd23d 8425 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
( I  -  J
)  +  N )  =  ( I  +  ( N  -  J
) ) )
3019, 29breqtrrd 4079 . . . . . . . 8  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  0  <  ( ( I  -  J )  +  N
) )
3163ad2ant1 1021 . . . . . . . . . 10  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  J  e.  RR )
32 resubcl 8356 . . . . . . . . . 10  |-  ( ( I  e.  RR  /\  J  e.  RR )  ->  ( I  -  J
)  e.  RR )
334, 31, 32syl2an 289 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
I  -  J )  e.  RR )
3453ad2ant2 1022 . . . . . . . . . 10  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  N  e.  RR )
3534adantl 277 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  N  e.  RR )
3633, 35possumd 8662 . . . . . . . 8  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
0  <  ( (
I  -  J )  +  N )  <->  -u N  < 
( I  -  J
) ) )
3730, 36mpbid 147 . . . . . . 7  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  -u N  <  ( I  -  J
) )
383adantr 276 . . . . . . . . . . . 12  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  I  e.  RR )
3934adantl 277 . . . . . . . . . . . 12  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  N  e.  RR )
40 readdcl 8071 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  RR  /\  N  e.  RR )  ->  ( J  +  N
)  e.  RR )
416, 5, 40syl2an 289 . . . . . . . . . . . . . 14  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  ( J  +  N
)  e.  RR )
42413adant3 1020 . . . . . . . . . . . . 13  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  ( J  +  N )  e.  RR )
4342adantl 277 . . . . . . . . . . . 12  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( J  +  N )  e.  RR )
4438, 39, 433jca 1180 . . . . . . . . . . 11  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( I  e.  RR  /\  N  e.  RR  /\  ( J  +  N )  e.  RR ) )
45 nn0ge0 9340 . . . . . . . . . . . . . 14  |-  ( J  e.  NN0  ->  0  <_  J )
46453ad2ant1 1021 . . . . . . . . . . . . 13  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  0  <_  J )
4746adantl 277 . . . . . . . . . . . 12  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  0  <_  J
)
485, 6anim12i 338 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  J  e.  NN0 )  -> 
( N  e.  RR  /\  J  e.  RR ) )
4948ancoms 268 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  ( N  e.  RR  /\  J  e.  RR ) )
50493adant3 1020 . . . . . . . . . . . . . 14  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  ( N  e.  RR  /\  J  e.  RR ) )
5150adantl 277 . . . . . . . . . . . . 13  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( N  e.  RR  /\  J  e.  RR ) )
52 addge02 8566 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  J  e.  RR )  ->  ( 0  <_  J  <->  N  <_  ( J  +  N ) ) )
5351, 52syl 14 . . . . . . . . . . . 12  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( 0  <_  J 
<->  N  <_  ( J  +  N ) ) )
5447, 53mpbid 147 . . . . . . . . . . 11  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  N  <_  ( J  +  N )
)
5544, 54lelttrdi 8519 . . . . . . . . . 10  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( I  < 
N  ->  I  <  ( J  +  N ) ) )
5655impancom 260 . . . . . . . . 9  |-  ( ( I  e.  NN0  /\  I  <  N )  -> 
( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  ->  I  <  ( J  +  N ) ) )
5756imp 124 . . . . . . . 8  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  I  <  ( J  +  N
) )
584adantr 276 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  I  e.  RR )
5931adantl 277 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  J  e.  RR )
6058, 59, 35ltsubadd2d 8636 . . . . . . . 8  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
( I  -  J
)  <  N  <->  I  <  ( J  +  N ) ) )
6157, 60mpbird 167 . . . . . . 7  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
I  -  J )  <  N )
6237, 61jca 306 . . . . . 6  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  ( -u N  <  ( I  -  J )  /\  ( I  -  J
)  <  N )
)
6362ex 115 . . . . 5  |-  ( ( I  e.  NN0  /\  I  <  N )  -> 
( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  ->  ( -u N  <  ( I  -  J
)  /\  ( I  -  J )  <  N
) ) )
642, 63biimtrid 152 . . . 4  |-  ( ( I  e.  NN0  /\  I  <  N )  -> 
( J  e.  ( 0..^ N )  -> 
( -u N  <  (
I  -  J )  /\  ( I  -  J )  <  N
) ) )
65643adant2 1019 . . 3  |-  ( ( I  e.  NN0  /\  N  e.  NN  /\  I  <  N )  ->  ( J  e.  ( 0..^ N )  ->  ( -u N  <  ( I  -  J )  /\  ( I  -  J
)  <  N )
) )
661, 65sylbi 121 . 2  |-  ( I  e.  ( 0..^ N )  ->  ( J  e.  ( 0..^ N )  ->  ( -u N  <  ( I  -  J
)  /\  ( I  -  J )  <  N
) ) )
6766imp 124 1  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N ) )  ->  ( -u N  <  ( I  -  J
)  /\  ( I  -  J )  <  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    e. wcel 2177   class class class wbr 4051  (class class class)co 5957   CCcc 7943   RRcr 7944   0cc0 7945    + caddc 7948    < clt 8127    <_ cle 8128    - cmin 8263   -ucneg 8264   NNcn 9056   NN0cn0 9315  ..^cfzo 10284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-fzo 10285
This theorem is referenced by:  addmodlteq  10565
  Copyright terms: Public domain W3C validator