ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subfzo0 Unicode version

Theorem subfzo0 10318
Description: The difference between two elements in a half-open range of nonnegative integers is greater than the negation of the upper bound and less than the upper bound of the range. (Contributed by AV, 20-Mar-2021.)
Assertion
Ref Expression
subfzo0  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N ) )  ->  ( -u N  <  ( I  -  J
)  /\  ( I  -  J )  <  N
) )

Proof of Theorem subfzo0
StepHypRef Expression
1 elfzo0 10258 . . 3  |-  ( I  e.  ( 0..^ N )  <->  ( I  e. 
NN0  /\  N  e.  NN  /\  I  <  N
) )
2 elfzo0 10258 . . . . 5  |-  ( J  e.  ( 0..^ N )  <->  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )
3 nn0re 9258 . . . . . . . . . . . 12  |-  ( I  e.  NN0  ->  I  e.  RR )
43adantr 276 . . . . . . . . . . 11  |-  ( ( I  e.  NN0  /\  I  <  N )  ->  I  e.  RR )
5 nnre 8997 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  RR )
6 nn0re 9258 . . . . . . . . . . . . . 14  |-  ( J  e.  NN0  ->  J  e.  RR )
7 resubcl 8290 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  J  e.  RR )  ->  ( N  -  J
)  e.  RR )
85, 6, 7syl2an 289 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  J  e.  NN0 )  -> 
( N  -  J
)  e.  RR )
98ancoms 268 . . . . . . . . . . . 12  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  ( N  -  J
)  e.  RR )
1093adant3 1019 . . . . . . . . . . 11  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  ( N  -  J )  e.  RR )
114, 10anim12i 338 . . . . . . . . . 10  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
I  e.  RR  /\  ( N  -  J
)  e.  RR ) )
12 nn0ge0 9274 . . . . . . . . . . . 12  |-  ( I  e.  NN0  ->  0  <_  I )
1312adantr 276 . . . . . . . . . . 11  |-  ( ( I  e.  NN0  /\  I  <  N )  -> 
0  <_  I )
14 posdif 8482 . . . . . . . . . . . . 13  |-  ( ( J  e.  RR  /\  N  e.  RR )  ->  ( J  <  N  <->  0  <  ( N  -  J ) ) )
156, 5, 14syl2an 289 . . . . . . . . . . . 12  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  ( J  <  N  <->  0  <  ( N  -  J ) ) )
1615biimp3a 1356 . . . . . . . . . . 11  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  0  <  ( N  -  J
) )
1713, 16anim12i 338 . . . . . . . . . 10  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
0  <_  I  /\  0  <  ( N  -  J ) ) )
18 addgegt0 8476 . . . . . . . . . 10  |-  ( ( ( I  e.  RR  /\  ( N  -  J
)  e.  RR )  /\  ( 0  <_  I  /\  0  <  ( N  -  J )
) )  ->  0  <  ( I  +  ( N  -  J ) ) )
1911, 17, 18syl2anc 411 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  0  <  ( I  +  ( N  -  J ) ) )
20 nn0cn 9259 . . . . . . . . . . . 12  |-  ( I  e.  NN0  ->  I  e.  CC )
2120adantr 276 . . . . . . . . . . 11  |-  ( ( I  e.  NN0  /\  I  <  N )  ->  I  e.  CC )
2221adantr 276 . . . . . . . . . 10  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  I  e.  CC )
23 nn0cn 9259 . . . . . . . . . . . 12  |-  ( J  e.  NN0  ->  J  e.  CC )
24233ad2ant1 1020 . . . . . . . . . . 11  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  J  e.  CC )
2524adantl 277 . . . . . . . . . 10  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  J  e.  CC )
26 nncn 8998 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  CC )
27263ad2ant2 1021 . . . . . . . . . . 11  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  N  e.  CC )
2827adantl 277 . . . . . . . . . 10  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  N  e.  CC )
2922, 25, 28subadd23d 8359 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
( I  -  J
)  +  N )  =  ( I  +  ( N  -  J
) ) )
3019, 29breqtrrd 4061 . . . . . . . 8  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  0  <  ( ( I  -  J )  +  N
) )
3163ad2ant1 1020 . . . . . . . . . 10  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  J  e.  RR )
32 resubcl 8290 . . . . . . . . . 10  |-  ( ( I  e.  RR  /\  J  e.  RR )  ->  ( I  -  J
)  e.  RR )
334, 31, 32syl2an 289 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
I  -  J )  e.  RR )
3453ad2ant2 1021 . . . . . . . . . 10  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  N  e.  RR )
3534adantl 277 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  N  e.  RR )
3633, 35possumd 8596 . . . . . . . 8  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
0  <  ( (
I  -  J )  +  N )  <->  -u N  < 
( I  -  J
) ) )
3730, 36mpbid 147 . . . . . . 7  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  -u N  <  ( I  -  J
) )
383adantr 276 . . . . . . . . . . . 12  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  I  e.  RR )
3934adantl 277 . . . . . . . . . . . 12  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  N  e.  RR )
40 readdcl 8005 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  RR  /\  N  e.  RR )  ->  ( J  +  N
)  e.  RR )
416, 5, 40syl2an 289 . . . . . . . . . . . . . 14  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  ( J  +  N
)  e.  RR )
42413adant3 1019 . . . . . . . . . . . . 13  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  ( J  +  N )  e.  RR )
4342adantl 277 . . . . . . . . . . . 12  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( J  +  N )  e.  RR )
4438, 39, 433jca 1179 . . . . . . . . . . 11  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( I  e.  RR  /\  N  e.  RR  /\  ( J  +  N )  e.  RR ) )
45 nn0ge0 9274 . . . . . . . . . . . . . 14  |-  ( J  e.  NN0  ->  0  <_  J )
46453ad2ant1 1020 . . . . . . . . . . . . 13  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  0  <_  J )
4746adantl 277 . . . . . . . . . . . 12  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  0  <_  J
)
485, 6anim12i 338 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  J  e.  NN0 )  -> 
( N  e.  RR  /\  J  e.  RR ) )
4948ancoms 268 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  ( N  e.  RR  /\  J  e.  RR ) )
50493adant3 1019 . . . . . . . . . . . . . 14  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  ( N  e.  RR  /\  J  e.  RR ) )
5150adantl 277 . . . . . . . . . . . . 13  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( N  e.  RR  /\  J  e.  RR ) )
52 addge02 8500 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  J  e.  RR )  ->  ( 0  <_  J  <->  N  <_  ( J  +  N ) ) )
5351, 52syl 14 . . . . . . . . . . . 12  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( 0  <_  J 
<->  N  <_  ( J  +  N ) ) )
5447, 53mpbid 147 . . . . . . . . . . 11  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  N  <_  ( J  +  N )
)
5544, 54lelttrdi 8453 . . . . . . . . . 10  |-  ( ( I  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( I  < 
N  ->  I  <  ( J  +  N ) ) )
5655impancom 260 . . . . . . . . 9  |-  ( ( I  e.  NN0  /\  I  <  N )  -> 
( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  ->  I  <  ( J  +  N ) ) )
5756imp 124 . . . . . . . 8  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  I  <  ( J  +  N
) )
584adantr 276 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  I  e.  RR )
5931adantl 277 . . . . . . . . 9  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  J  e.  RR )
6058, 59, 35ltsubadd2d 8570 . . . . . . . 8  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
( I  -  J
)  <  N  <->  I  <  ( J  +  N ) ) )
6157, 60mpbird 167 . . . . . . 7  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  (
I  -  J )  <  N )
6237, 61jca 306 . . . . . 6  |-  ( ( ( I  e.  NN0  /\  I  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  ( -u N  <  ( I  -  J )  /\  ( I  -  J
)  <  N )
)
6362ex 115 . . . . 5  |-  ( ( I  e.  NN0  /\  I  <  N )  -> 
( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  ->  ( -u N  <  ( I  -  J
)  /\  ( I  -  J )  <  N
) ) )
642, 63biimtrid 152 . . . 4  |-  ( ( I  e.  NN0  /\  I  <  N )  -> 
( J  e.  ( 0..^ N )  -> 
( -u N  <  (
I  -  J )  /\  ( I  -  J )  <  N
) ) )
65643adant2 1018 . . 3  |-  ( ( I  e.  NN0  /\  N  e.  NN  /\  I  <  N )  ->  ( J  e.  ( 0..^ N )  ->  ( -u N  <  ( I  -  J )  /\  ( I  -  J
)  <  N )
) )
661, 65sylbi 121 . 2  |-  ( I  e.  ( 0..^ N )  ->  ( J  e.  ( 0..^ N )  ->  ( -u N  <  ( I  -  J
)  /\  ( I  -  J )  <  N
) ) )
6766imp 124 1  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N ) )  ->  ( -u N  <  ( I  -  J
)  /\  ( I  -  J )  <  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879    + caddc 7882    < clt 8061    <_ cle 8062    - cmin 8197   -ucneg 8198   NNcn 8990   NN0cn0 9249  ..^cfzo 10217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218
This theorem is referenced by:  addmodlteq  10490
  Copyright terms: Public domain W3C validator