ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div2subap Unicode version

Theorem div2subap 8733
Description: Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
div2subap  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC  /\  C #  D
) )  ->  (
( A  -  B
)  /  ( C  -  D ) )  =  ( ( B  -  A )  / 
( D  -  C
) ) )

Proof of Theorem div2subap
StepHypRef Expression
1 subcl 8097 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
2 subcl 8097 . . . . 5  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  -  D
)  e.  CC )
323adant3 1007 . . . 4  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  -  D )  e.  CC )
4 apneg 8509 . . . . . . . 8  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C #  D  <->  -u C #  -u D
) )
54biimp3a 1335 . . . . . . 7  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  -u C #  -u D )
6 simp1 987 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  C  e.  CC )
76negcld 8196 . . . . . . . 8  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  -u C  e.  CC )
8 simp2 988 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  D  e.  CC )
98negcld 8196 . . . . . . . 8  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  -u D  e.  CC )
10 apadd2 8507 . . . . . . . 8  |-  ( (
-u C  e.  CC  /\  -u D  e.  CC  /\  C  e.  CC )  ->  ( -u C #  -u D  <->  ( C  +  -u C ) #  ( C  +  -u D ) ) )
117, 9, 6, 10syl3anc 1228 . . . . . . 7  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( -u C #  -u D  <->  ( C  +  -u C ) #  ( C  +  -u D
) ) )
125, 11mpbid 146 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  +  -u C ) #  ( C  +  -u D ) )
136negidd 8199 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  +  -u C )  =  0 )
146, 8negsubd 8215 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  +  -u D )  =  ( C  -  D ) )
1512, 13, 143brtr3d 4013 . . . . 5  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  0 #  ( C  -  D
) )
16 0cnd 7892 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  0  e.  CC )
17 apsym 8504 . . . . . 6  |-  ( ( 0  e.  CC  /\  ( C  -  D
)  e.  CC )  ->  ( 0 #  ( C  -  D )  <-> 
( C  -  D
) #  0 ) )
1816, 3, 17syl2anc 409 . . . . 5  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  (
0 #  ( C  -  D )  <->  ( C  -  D ) #  0 ) )
1915, 18mpbid 146 . . . 4  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  -  D ) #  0 )
203, 19jca 304 . . 3  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  (
( C  -  D
)  e.  CC  /\  ( C  -  D
) #  0 ) )
21 div2negap 8631 . . . 4  |-  ( ( ( A  -  B
)  e.  CC  /\  ( C  -  D
)  e.  CC  /\  ( C  -  D
) #  0 )  -> 
( -u ( A  -  B )  /  -u ( C  -  D )
)  =  ( ( A  -  B )  /  ( C  -  D ) ) )
22213expb 1194 . . 3  |-  ( ( ( A  -  B
)  e.  CC  /\  ( ( C  -  D )  e.  CC  /\  ( C  -  D
) #  0 ) )  ->  ( -u ( A  -  B )  /  -u ( C  -  D ) )  =  ( ( A  -  B )  /  ( C  -  D )
) )
231, 20, 22syl2an 287 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC  /\  C #  D
) )  ->  ( -u ( A  -  B
)  /  -u ( C  -  D )
)  =  ( ( A  -  B )  /  ( C  -  D ) ) )
24 negsubdi2 8157 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( A  -  B )  =  ( B  -  A ) )
25 negsubdi2 8157 . . . 4  |-  ( ( C  e.  CC  /\  D  e.  CC )  -> 
-u ( C  -  D )  =  ( D  -  C ) )
26253adant3 1007 . . 3  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  -u ( C  -  D )  =  ( D  -  C ) )
2724, 26oveqan12d 5861 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC  /\  C #  D
) )  ->  ( -u ( A  -  B
)  /  -u ( C  -  D )
)  =  ( ( B  -  A )  /  ( D  -  C ) ) )
2823, 27eqtr3d 2200 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC  /\  C #  D
) )  ->  (
( A  -  B
)  /  ( C  -  D ) )  =  ( ( B  -  A )  / 
( D  -  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   CCcc 7751   0cc0 7753    + caddc 7756    - cmin 8069   -ucneg 8070   # cap 8479    / cdiv 8568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569
This theorem is referenced by:  div2subapd  8734
  Copyright terms: Public domain W3C validator