ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div2subap Unicode version

Theorem div2subap 8864
Description: Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
div2subap  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC  /\  C #  D
) )  ->  (
( A  -  B
)  /  ( C  -  D ) )  =  ( ( B  -  A )  / 
( D  -  C
) ) )

Proof of Theorem div2subap
StepHypRef Expression
1 subcl 8225 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
2 subcl 8225 . . . . 5  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  -  D
)  e.  CC )
323adant3 1019 . . . 4  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  -  D )  e.  CC )
4 apneg 8638 . . . . . . . 8  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C #  D  <->  -u C #  -u D
) )
54biimp3a 1356 . . . . . . 7  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  -u C #  -u D )
6 simp1 999 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  C  e.  CC )
76negcld 8324 . . . . . . . 8  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  -u C  e.  CC )
8 simp2 1000 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  D  e.  CC )
98negcld 8324 . . . . . . . 8  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  -u D  e.  CC )
10 apadd2 8636 . . . . . . . 8  |-  ( (
-u C  e.  CC  /\  -u D  e.  CC  /\  C  e.  CC )  ->  ( -u C #  -u D  <->  ( C  +  -u C ) #  ( C  +  -u D ) ) )
117, 9, 6, 10syl3anc 1249 . . . . . . 7  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( -u C #  -u D  <->  ( C  +  -u C ) #  ( C  +  -u D
) ) )
125, 11mpbid 147 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  +  -u C ) #  ( C  +  -u D ) )
136negidd 8327 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  +  -u C )  =  0 )
146, 8negsubd 8343 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  +  -u D )  =  ( C  -  D ) )
1512, 13, 143brtr3d 4064 . . . . 5  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  0 #  ( C  -  D
) )
16 0cnd 8019 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  0  e.  CC )
17 apsym 8633 . . . . . 6  |-  ( ( 0  e.  CC  /\  ( C  -  D
)  e.  CC )  ->  ( 0 #  ( C  -  D )  <-> 
( C  -  D
) #  0 ) )
1816, 3, 17syl2anc 411 . . . . 5  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  (
0 #  ( C  -  D )  <->  ( C  -  D ) #  0 ) )
1915, 18mpbid 147 . . . 4  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  -  D ) #  0 )
203, 19jca 306 . . 3  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  (
( C  -  D
)  e.  CC  /\  ( C  -  D
) #  0 ) )
21 div2negap 8762 . . . 4  |-  ( ( ( A  -  B
)  e.  CC  /\  ( C  -  D
)  e.  CC  /\  ( C  -  D
) #  0 )  -> 
( -u ( A  -  B )  /  -u ( C  -  D )
)  =  ( ( A  -  B )  /  ( C  -  D ) ) )
22213expb 1206 . . 3  |-  ( ( ( A  -  B
)  e.  CC  /\  ( ( C  -  D )  e.  CC  /\  ( C  -  D
) #  0 ) )  ->  ( -u ( A  -  B )  /  -u ( C  -  D ) )  =  ( ( A  -  B )  /  ( C  -  D )
) )
231, 20, 22syl2an 289 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC  /\  C #  D
) )  ->  ( -u ( A  -  B
)  /  -u ( C  -  D )
)  =  ( ( A  -  B )  /  ( C  -  D ) ) )
24 negsubdi2 8285 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( A  -  B )  =  ( B  -  A ) )
25 negsubdi2 8285 . . . 4  |-  ( ( C  e.  CC  /\  D  e.  CC )  -> 
-u ( C  -  D )  =  ( D  -  C ) )
26253adant3 1019 . . 3  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  -u ( C  -  D )  =  ( D  -  C ) )
2724, 26oveqan12d 5941 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC  /\  C #  D
) )  ->  ( -u ( A  -  B
)  /  -u ( C  -  D )
)  =  ( ( B  -  A )  /  ( D  -  C ) ) )
2823, 27eqtr3d 2231 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC  /\  C #  D
) )  ->  (
( A  -  B
)  /  ( C  -  D ) )  =  ( ( B  -  A )  / 
( D  -  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   CCcc 7877   0cc0 7879    + caddc 7882    - cmin 8197   -ucneg 8198   # cap 8608    / cdiv 8699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700
This theorem is referenced by:  div2subapd  8865
  Copyright terms: Public domain W3C validator