ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div2subap Unicode version

Theorem div2subap 8930
Description: Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
div2subap  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC  /\  C #  D
) )  ->  (
( A  -  B
)  /  ( C  -  D ) )  =  ( ( B  -  A )  / 
( D  -  C
) ) )

Proof of Theorem div2subap
StepHypRef Expression
1 subcl 8291 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
2 subcl 8291 . . . . 5  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  -  D
)  e.  CC )
323adant3 1020 . . . 4  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  -  D )  e.  CC )
4 apneg 8704 . . . . . . . 8  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C #  D  <->  -u C #  -u D
) )
54biimp3a 1358 . . . . . . 7  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  -u C #  -u D )
6 simp1 1000 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  C  e.  CC )
76negcld 8390 . . . . . . . 8  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  -u C  e.  CC )
8 simp2 1001 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  D  e.  CC )
98negcld 8390 . . . . . . . 8  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  -u D  e.  CC )
10 apadd2 8702 . . . . . . . 8  |-  ( (
-u C  e.  CC  /\  -u D  e.  CC  /\  C  e.  CC )  ->  ( -u C #  -u D  <->  ( C  +  -u C ) #  ( C  +  -u D ) ) )
117, 9, 6, 10syl3anc 1250 . . . . . . 7  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( -u C #  -u D  <->  ( C  +  -u C ) #  ( C  +  -u D
) ) )
125, 11mpbid 147 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  +  -u C ) #  ( C  +  -u D ) )
136negidd 8393 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  +  -u C )  =  0 )
146, 8negsubd 8409 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  +  -u D )  =  ( C  -  D ) )
1512, 13, 143brtr3d 4082 . . . . 5  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  0 #  ( C  -  D
) )
16 0cnd 8085 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  0  e.  CC )
17 apsym 8699 . . . . . 6  |-  ( ( 0  e.  CC  /\  ( C  -  D
)  e.  CC )  ->  ( 0 #  ( C  -  D )  <-> 
( C  -  D
) #  0 ) )
1816, 3, 17syl2anc 411 . . . . 5  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  (
0 #  ( C  -  D )  <->  ( C  -  D ) #  0 ) )
1915, 18mpbid 147 . . . 4  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  -  D ) #  0 )
203, 19jca 306 . . 3  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  (
( C  -  D
)  e.  CC  /\  ( C  -  D
) #  0 ) )
21 div2negap 8828 . . . 4  |-  ( ( ( A  -  B
)  e.  CC  /\  ( C  -  D
)  e.  CC  /\  ( C  -  D
) #  0 )  -> 
( -u ( A  -  B )  /  -u ( C  -  D )
)  =  ( ( A  -  B )  /  ( C  -  D ) ) )
22213expb 1207 . . 3  |-  ( ( ( A  -  B
)  e.  CC  /\  ( ( C  -  D )  e.  CC  /\  ( C  -  D
) #  0 ) )  ->  ( -u ( A  -  B )  /  -u ( C  -  D ) )  =  ( ( A  -  B )  /  ( C  -  D )
) )
231, 20, 22syl2an 289 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC  /\  C #  D
) )  ->  ( -u ( A  -  B
)  /  -u ( C  -  D )
)  =  ( ( A  -  B )  /  ( C  -  D ) ) )
24 negsubdi2 8351 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( A  -  B )  =  ( B  -  A ) )
25 negsubdi2 8351 . . . 4  |-  ( ( C  e.  CC  /\  D  e.  CC )  -> 
-u ( C  -  D )  =  ( D  -  C ) )
26253adant3 1020 . . 3  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  -u ( C  -  D )  =  ( D  -  C ) )
2724, 26oveqan12d 5976 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC  /\  C #  D
) )  ->  ( -u ( A  -  B
)  /  -u ( C  -  D )
)  =  ( ( B  -  A )  /  ( D  -  C ) ) )
2823, 27eqtr3d 2241 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC  /\  C #  D
) )  ->  (
( A  -  B
)  /  ( C  -  D ) )  =  ( ( B  -  A )  / 
( D  -  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   class class class wbr 4051  (class class class)co 5957   CCcc 7943   0cc0 7945    + caddc 7948    - cmin 8263   -ucneg 8264   # cap 8674    / cdiv 8765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-po 4351  df-iso 4352  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766
This theorem is referenced by:  div2subapd  8931
  Copyright terms: Public domain W3C validator