ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div2subap Unicode version

Theorem div2subap 8796
Description: Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
div2subap  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC  /\  C #  D
) )  ->  (
( A  -  B
)  /  ( C  -  D ) )  =  ( ( B  -  A )  / 
( D  -  C
) ) )

Proof of Theorem div2subap
StepHypRef Expression
1 subcl 8158 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
2 subcl 8158 . . . . 5  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  -  D
)  e.  CC )
323adant3 1017 . . . 4  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  -  D )  e.  CC )
4 apneg 8570 . . . . . . . 8  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C #  D  <->  -u C #  -u D
) )
54biimp3a 1345 . . . . . . 7  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  -u C #  -u D )
6 simp1 997 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  C  e.  CC )
76negcld 8257 . . . . . . . 8  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  -u C  e.  CC )
8 simp2 998 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  D  e.  CC )
98negcld 8257 . . . . . . . 8  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  -u D  e.  CC )
10 apadd2 8568 . . . . . . . 8  |-  ( (
-u C  e.  CC  /\  -u D  e.  CC  /\  C  e.  CC )  ->  ( -u C #  -u D  <->  ( C  +  -u C ) #  ( C  +  -u D ) ) )
117, 9, 6, 10syl3anc 1238 . . . . . . 7  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( -u C #  -u D  <->  ( C  +  -u C ) #  ( C  +  -u D
) ) )
125, 11mpbid 147 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  +  -u C ) #  ( C  +  -u D ) )
136negidd 8260 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  +  -u C )  =  0 )
146, 8negsubd 8276 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  +  -u D )  =  ( C  -  D ) )
1512, 13, 143brtr3d 4036 . . . . 5  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  0 #  ( C  -  D
) )
16 0cnd 7952 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  0  e.  CC )
17 apsym 8565 . . . . . 6  |-  ( ( 0  e.  CC  /\  ( C  -  D
)  e.  CC )  ->  ( 0 #  ( C  -  D )  <-> 
( C  -  D
) #  0 ) )
1816, 3, 17syl2anc 411 . . . . 5  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  (
0 #  ( C  -  D )  <->  ( C  -  D ) #  0 ) )
1915, 18mpbid 147 . . . 4  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  ( C  -  D ) #  0 )
203, 19jca 306 . . 3  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  (
( C  -  D
)  e.  CC  /\  ( C  -  D
) #  0 ) )
21 div2negap 8694 . . . 4  |-  ( ( ( A  -  B
)  e.  CC  /\  ( C  -  D
)  e.  CC  /\  ( C  -  D
) #  0 )  -> 
( -u ( A  -  B )  /  -u ( C  -  D )
)  =  ( ( A  -  B )  /  ( C  -  D ) ) )
22213expb 1204 . . 3  |-  ( ( ( A  -  B
)  e.  CC  /\  ( ( C  -  D )  e.  CC  /\  ( C  -  D
) #  0 ) )  ->  ( -u ( A  -  B )  /  -u ( C  -  D ) )  =  ( ( A  -  B )  /  ( C  -  D )
) )
231, 20, 22syl2an 289 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC  /\  C #  D
) )  ->  ( -u ( A  -  B
)  /  -u ( C  -  D )
)  =  ( ( A  -  B )  /  ( C  -  D ) ) )
24 negsubdi2 8218 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( A  -  B )  =  ( B  -  A ) )
25 negsubdi2 8218 . . . 4  |-  ( ( C  e.  CC  /\  D  e.  CC )  -> 
-u ( C  -  D )  =  ( D  -  C ) )
26253adant3 1017 . . 3  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C #  D )  ->  -u ( C  -  D )  =  ( D  -  C ) )
2724, 26oveqan12d 5896 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC  /\  C #  D
) )  ->  ( -u ( A  -  B
)  /  -u ( C  -  D )
)  =  ( ( B  -  A )  /  ( D  -  C ) ) )
2823, 27eqtr3d 2212 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC  /\  C #  D
) )  ->  (
( A  -  B
)  /  ( C  -  D ) )  =  ( ( B  -  A )  / 
( D  -  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005  (class class class)co 5877   CCcc 7811   0cc0 7813    + caddc 7816    - cmin 8130   -ucneg 8131   # cap 8540    / cdiv 8631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632
This theorem is referenced by:  div2subapd  8797
  Copyright terms: Public domain W3C validator