ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iocssre Unicode version

Theorem iocssre 10045
Description: A closed-above interval with real upper bound is a set of reals. (Contributed by FL, 29-May-2014.)
Assertion
Ref Expression
iocssre  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A (,] B )  C_  RR )

Proof of Theorem iocssre
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elioc2 10028 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
x  e.  ( A (,] B )  <->  ( x  e.  RR  /\  A  < 
x  /\  x  <_  B ) ) )
21biimp3a 1356 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR  /\  x  e.  ( A (,] B
) )  ->  (
x  e.  RR  /\  A  <  x  /\  x  <_  B ) )
32simp1d 1011 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR  /\  x  e.  ( A (,] B
) )  ->  x  e.  RR )
433expia 1207 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
x  e.  ( A (,] B )  ->  x  e.  RR )
)
54ssrdv 3190 1  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A (,] B )  C_  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2167    C_ wss 3157   class class class wbr 4034  (class class class)co 5925   RRcr 7895   RR*cxr 8077    < clt 8078    <_ cle 8079   (,]cioc 9981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-ioc 9985
This theorem is referenced by:  negpitopissre  15175
  Copyright terms: Public domain W3C validator