ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iocssre Unicode version

Theorem iocssre 9922
Description: A closed-above interval with real upper bound is a set of reals. (Contributed by FL, 29-May-2014.)
Assertion
Ref Expression
iocssre  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A (,] B )  C_  RR )

Proof of Theorem iocssre
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elioc2 9905 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
x  e.  ( A (,] B )  <->  ( x  e.  RR  /\  A  < 
x  /\  x  <_  B ) ) )
21biimp3a 1345 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR  /\  x  e.  ( A (,] B
) )  ->  (
x  e.  RR  /\  A  <  x  /\  x  <_  B ) )
32simp1d 1009 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR  /\  x  e.  ( A (,] B
) )  ->  x  e.  RR )
433expia 1205 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
x  e.  ( A (,] B )  ->  x  e.  RR )
)
54ssrdv 3159 1  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A (,] B )  C_  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    e. wcel 2146    C_ wss 3127   class class class wbr 3998  (class class class)co 5865   RRcr 7785   RR*cxr 7965    < clt 7966    <_ cle 7967   (,]cioc 9858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-po 4290  df-iso 4291  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-ioc 9862
This theorem is referenced by:  negpitopissre  13827
  Copyright terms: Public domain W3C validator