ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efltim Unicode version

Theorem efltim 11588
Description: The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 20-Dec-2022.)
Assertion
Ref Expression
efltim  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  ( exp `  A
)  <  ( exp `  B ) ) )

Proof of Theorem efltim
StepHypRef Expression
1 simp2 983 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  B  e.  RR )
2 simp1 982 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  A  e.  RR )
31, 2resubcld 8250 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  RR )
4 posdif 8324 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
54biimp3a 1327 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  0  <  ( B  -  A
) )
63, 5elrpd 9593 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  RR+ )
7 efgt1 11587 . . . . 5  |-  ( ( B  -  A )  e.  RR+  ->  1  < 
( exp `  ( B  -  A )
) )
86, 7syl 14 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  1  <  ( exp `  ( B  -  A )
) )
92reefcld 11559 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( exp `  A )  e.  RR )
103reefcld 11559 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( exp `  ( B  -  A ) )  e.  RR )
11 efgt0 11574 . . . . . 6  |-  ( A  e.  RR  ->  0  <  ( exp `  A
) )
122, 11syl 14 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  0  <  ( exp `  A
) )
13 ltmulgt11 8729 . . . . 5  |-  ( ( ( exp `  A
)  e.  RR  /\  ( exp `  ( B  -  A ) )  e.  RR  /\  0  <  ( exp `  A
) )  ->  (
1  <  ( exp `  ( B  -  A
) )  <->  ( exp `  A )  <  (
( exp `  A
)  x.  ( exp `  ( B  -  A
) ) ) ) )
149, 10, 12, 13syl3anc 1220 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
1  <  ( exp `  ( B  -  A
) )  <->  ( exp `  A )  <  (
( exp `  A
)  x.  ( exp `  ( B  -  A
) ) ) ) )
158, 14mpbid 146 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( exp `  A )  < 
( ( exp `  A
)  x.  ( exp `  ( B  -  A
) ) ) )
162recnd 7900 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  A  e.  CC )
173recnd 7900 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  CC )
18 efadd 11565 . . . . 5  |-  ( ( A  e.  CC  /\  ( B  -  A
)  e.  CC )  ->  ( exp `  ( A  +  ( B  -  A ) ) )  =  ( ( exp `  A )  x.  ( exp `  ( B  -  A ) ) ) )
1916, 17, 18syl2anc 409 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( exp `  ( A  +  ( B  -  A
) ) )  =  ( ( exp `  A
)  x.  ( exp `  ( B  -  A
) ) ) )
201recnd 7900 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  B  e.  CC )
2116, 20pncan3d 8183 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( A  +  ( B  -  A ) )  =  B )
2221fveq2d 5471 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( exp `  ( A  +  ( B  -  A
) ) )  =  ( exp `  B
) )
2319, 22eqtr3d 2192 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
( exp `  A
)  x.  ( exp `  ( B  -  A
) ) )  =  ( exp `  B
) )
2415, 23breqtrd 3990 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( exp `  A )  < 
( exp `  B
) )
25243expia 1187 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  ( exp `  A
)  <  ( exp `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128   class class class wbr 3965   ` cfv 5169  (class class class)co 5821   CCcc 7724   RRcr 7725   0cc0 7726   1c1 7727    + caddc 7729    x. cmul 7731    < clt 7906    - cmin 8040   RR+crp 9553   expce 11532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-disj 3943  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-isom 5178  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-frec 6335  df-1o 6360  df-oadd 6364  df-er 6477  df-en 6683  df-dom 6684  df-fin 6685  df-sup 6924  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-q 9522  df-rp 9554  df-ico 9791  df-fz 9906  df-fzo 10035  df-seqfrec 10338  df-exp 10412  df-fac 10593  df-bc 10615  df-ihash 10643  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892  df-clim 11169  df-sumdc 11244  df-ef 11538
This theorem is referenced by:  reef11  11589  reeff1olem  13063  efltlemlt  13066  eflt  13067
  Copyright terms: Public domain W3C validator