ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efltim Unicode version

Theorem efltim 11255
Description: The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 20-Dec-2022.)
Assertion
Ref Expression
efltim  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  ( exp `  A
)  <  ( exp `  B ) ) )

Proof of Theorem efltim
StepHypRef Expression
1 simp2 965 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  B  e.  RR )
2 simp1 964 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  A  e.  RR )
31, 2resubcld 8062 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  RR )
4 posdif 8136 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
54biimp3a 1306 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  0  <  ( B  -  A
) )
63, 5elrpd 9380 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  RR+ )
7 efgt1 11254 . . . . 5  |-  ( ( B  -  A )  e.  RR+  ->  1  < 
( exp `  ( B  -  A )
) )
86, 7syl 14 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  1  <  ( exp `  ( B  -  A )
) )
92reefcld 11226 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( exp `  A )  e.  RR )
103reefcld 11226 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( exp `  ( B  -  A ) )  e.  RR )
11 efgt0 11241 . . . . . 6  |-  ( A  e.  RR  ->  0  <  ( exp `  A
) )
122, 11syl 14 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  0  <  ( exp `  A
) )
13 ltmulgt11 8532 . . . . 5  |-  ( ( ( exp `  A
)  e.  RR  /\  ( exp `  ( B  -  A ) )  e.  RR  /\  0  <  ( exp `  A
) )  ->  (
1  <  ( exp `  ( B  -  A
) )  <->  ( exp `  A )  <  (
( exp `  A
)  x.  ( exp `  ( B  -  A
) ) ) ) )
149, 10, 12, 13syl3anc 1199 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
1  <  ( exp `  ( B  -  A
) )  <->  ( exp `  A )  <  (
( exp `  A
)  x.  ( exp `  ( B  -  A
) ) ) ) )
158, 14mpbid 146 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( exp `  A )  < 
( ( exp `  A
)  x.  ( exp `  ( B  -  A
) ) ) )
162recnd 7718 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  A  e.  CC )
173recnd 7718 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  CC )
18 efadd 11232 . . . . 5  |-  ( ( A  e.  CC  /\  ( B  -  A
)  e.  CC )  ->  ( exp `  ( A  +  ( B  -  A ) ) )  =  ( ( exp `  A )  x.  ( exp `  ( B  -  A ) ) ) )
1916, 17, 18syl2anc 406 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( exp `  ( A  +  ( B  -  A
) ) )  =  ( ( exp `  A
)  x.  ( exp `  ( B  -  A
) ) ) )
201recnd 7718 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  B  e.  CC )
2116, 20pncan3d 7999 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( A  +  ( B  -  A ) )  =  B )
2221fveq2d 5379 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( exp `  ( A  +  ( B  -  A
) ) )  =  ( exp `  B
) )
2319, 22eqtr3d 2149 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
( exp `  A
)  x.  ( exp `  ( B  -  A
) ) )  =  ( exp `  B
) )
2415, 23breqtrd 3919 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( exp `  A )  < 
( exp `  B
) )
25243expia 1166 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  ( exp `  A
)  <  ( exp `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 945    = wceq 1314    e. wcel 1463   class class class wbr 3895   ` cfv 5081  (class class class)co 5728   CCcc 7545   RRcr 7546   0cc0 7547   1c1 7548    + caddc 7550    x. cmul 7552    < clt 7724    - cmin 7856   RR+crp 9343   expce 11199
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663  ax-arch 7664  ax-caucvg 7665
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-disj 3873  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-isom 5090  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-frec 6242  df-1o 6267  df-oadd 6271  df-er 6383  df-en 6589  df-dom 6590  df-fin 6591  df-sup 6823  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-2 8689  df-3 8690  df-4 8691  df-n0 8882  df-z 8959  df-uz 9229  df-q 9314  df-rp 9344  df-ico 9570  df-fz 9684  df-fzo 9813  df-seqfrec 10112  df-exp 10186  df-fac 10365  df-bc 10387  df-ihash 10415  df-cj 10507  df-re 10508  df-im 10509  df-rsqrt 10662  df-abs 10663  df-clim 10940  df-sumdc 11015  df-ef 11205
This theorem is referenced by:  efler  11256  reef11  11257
  Copyright terms: Public domain W3C validator