ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin4lt0 Unicode version

Theorem sin4lt0 11697
Description: The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
sin4lt0  |-  ( sin `  4 )  <  0

Proof of Theorem sin4lt0
StepHypRef Expression
1 2t2e4 9003 . . . 4  |-  ( 2  x.  2 )  =  4
21fveq2i 5484 . . 3  |-  ( sin `  ( 2  x.  2 ) )  =  ( sin `  4 )
3 2cn 8920 . . . 4  |-  2  e.  CC
4 sin2t 11680 . . . 4  |-  ( 2  e.  CC  ->  ( sin `  ( 2  x.  2 ) )  =  ( 2  x.  (
( sin `  2
)  x.  ( cos `  2 ) ) ) )
53, 4ax-mp 5 . . 3  |-  ( sin `  ( 2  x.  2 ) )  =  ( 2  x.  ( ( sin `  2 )  x.  ( cos `  2
) ) )
62, 5eqtr3i 2187 . 2  |-  ( sin `  4 )  =  ( 2  x.  (
( sin `  2
)  x.  ( cos `  2 ) ) )
7 sincos2sgn 11696 . . . . . . 7  |-  ( 0  <  ( sin `  2
)  /\  ( cos `  2 )  <  0
)
87simpri 112 . . . . . 6  |-  ( cos `  2 )  <  0
9 2re 8919 . . . . . . . 8  |-  2  e.  RR
10 recoscl 11652 . . . . . . . 8  |-  ( 2  e.  RR  ->  ( cos `  2 )  e.  RR )
119, 10ax-mp 5 . . . . . . 7  |-  ( cos `  2 )  e.  RR
12 0re 7891 . . . . . . 7  |-  0  e.  RR
13 resincl 11651 . . . . . . . . 9  |-  ( 2  e.  RR  ->  ( sin `  2 )  e.  RR )
149, 13ax-mp 5 . . . . . . . 8  |-  ( sin `  2 )  e.  RR
157simpli 110 . . . . . . . 8  |-  0  <  ( sin `  2
)
1614, 15pm3.2i 270 . . . . . . 7  |-  ( ( sin `  2 )  e.  RR  /\  0  <  ( sin `  2
) )
17 ltmul2 8743 . . . . . . 7  |-  ( ( ( cos `  2
)  e.  RR  /\  0  e.  RR  /\  (
( sin `  2
)  e.  RR  /\  0  <  ( sin `  2
) ) )  -> 
( ( cos `  2
)  <  0  <->  ( ( sin `  2 )  x.  ( cos `  2
) )  <  (
( sin `  2
)  x.  0 ) ) )
1811, 12, 16, 17mp3an 1326 . . . . . 6  |-  ( ( cos `  2 )  <  0  <->  ( ( sin `  2 )  x.  ( cos `  2
) )  <  (
( sin `  2
)  x.  0 ) )
198, 18mpbi 144 . . . . 5  |-  ( ( sin `  2 )  x.  ( cos `  2
) )  <  (
( sin `  2
)  x.  0 )
2014recni 7903 . . . . . 6  |-  ( sin `  2 )  e.  CC
2120mul01i 8281 . . . . 5  |-  ( ( sin `  2 )  x.  0 )  =  0
2219, 21breqtri 4002 . . . 4  |-  ( ( sin `  2 )  x.  ( cos `  2
) )  <  0
2314, 11remulcli 7905 . . . . 5  |-  ( ( sin `  2 )  x.  ( cos `  2
) )  e.  RR
24 2pos 8940 . . . . . 6  |-  0  <  2
259, 24pm3.2i 270 . . . . 5  |-  ( 2  e.  RR  /\  0  <  2 )
26 ltmul2 8743 . . . . 5  |-  ( ( ( ( sin `  2
)  x.  ( cos `  2 ) )  e.  RR  /\  0  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( ( sin `  2 )  x.  ( cos `  2
) )  <  0  <->  ( 2  x.  ( ( sin `  2 )  x.  ( cos `  2
) ) )  < 
( 2  x.  0 ) ) )
2723, 12, 25, 26mp3an 1326 . . . 4  |-  ( ( ( sin `  2
)  x.  ( cos `  2 ) )  <  0  <->  ( 2  x.  ( ( sin `  2 )  x.  ( cos `  2
) ) )  < 
( 2  x.  0 ) )
2822, 27mpbi 144 . . 3  |-  ( 2  x.  ( ( sin `  2 )  x.  ( cos `  2
) ) )  < 
( 2  x.  0 )
293mul01i 8281 . . 3  |-  ( 2  x.  0 )  =  0
3028, 29breqtri 4002 . 2  |-  ( 2  x.  ( ( sin `  2 )  x.  ( cos `  2
) ) )  <  0
316, 30eqbrtri 3998 1  |-  ( sin `  4 )  <  0
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   class class class wbr 3977   ` cfv 5183  (class class class)co 5837   CCcc 7743   RRcr 7744   0cc0 7745    x. cmul 7750    < clt 7925   2c2 8900   4c4 8902   sincsin 11575   cosccos 11576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4092  ax-sep 4095  ax-nul 4103  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-iinf 4560  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-mulrcl 7844  ax-addcom 7845  ax-mulcom 7846  ax-addass 7847  ax-mulass 7848  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-1rid 7852  ax-0id 7853  ax-rnegex 7854  ax-precex 7855  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-apti 7860  ax-pre-ltadd 7861  ax-pre-mulgt0 7862  ax-pre-mulext 7863  ax-arch 7864  ax-caucvg 7865
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2724  df-sbc 2948  df-csb 3042  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-nul 3406  df-if 3517  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-iun 3863  df-disj 3955  df-br 3978  df-opab 4039  df-mpt 4040  df-tr 4076  df-id 4266  df-po 4269  df-iso 4270  df-iord 4339  df-on 4341  df-ilim 4342  df-suc 4344  df-iom 4563  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-f1 5188  df-fo 5189  df-f1o 5190  df-fv 5191  df-isom 5192  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-1st 6101  df-2nd 6102  df-recs 6265  df-irdg 6330  df-frec 6351  df-1o 6376  df-oadd 6380  df-er 6493  df-en 6699  df-dom 6700  df-fin 6701  df-sup 6941  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-reap 8465  df-ap 8472  df-div 8561  df-inn 8850  df-2 8908  df-3 8909  df-4 8910  df-5 8911  df-6 8912  df-7 8913  df-8 8914  df-9 8915  df-n0 9107  df-z 9184  df-uz 9459  df-q 9550  df-rp 9582  df-ioc 9821  df-ico 9822  df-fz 9937  df-fzo 10069  df-seqfrec 10372  df-exp 10446  df-fac 10629  df-bc 10651  df-ihash 10679  df-shft 10747  df-cj 10774  df-re 10775  df-im 10776  df-rsqrt 10930  df-abs 10931  df-clim 11210  df-sumdc 11285  df-ef 11579  df-sin 11581  df-cos 11582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator