| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvexfo | GIF version | ||
| Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.) |
| Ref | Expression |
|---|---|
| cbvfo.1 | ⊢ ((𝐹‘𝑥) = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvexfo | ⊢ (𝐹:𝐴–onto→𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofn 5526 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | cbvfo.1 | . . . . . 6 ⊢ ((𝐹‘𝑥) = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | bicomd 141 | . . . . 5 ⊢ ((𝐹‘𝑥) = 𝑦 → (𝜓 ↔ 𝜑)) |
| 4 | 3 | eqcoms 2212 | . . . 4 ⊢ (𝑦 = (𝐹‘𝑥) → (𝜓 ↔ 𝜑)) |
| 5 | 4 | rexrn 5745 | . . 3 ⊢ (𝐹 Fn 𝐴 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
| 6 | 1, 5 | syl 14 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
| 7 | forn 5527 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 8 | 7 | rexeqdv 2715 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
| 9 | 6, 8 | bitr3d 190 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ∃wrex 2489 ran crn 4697 Fn wfn 5289 –onto→wfo 5292 ‘cfv 5294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fo 5300 df-fv 5302 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |