ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvexfo GIF version

Theorem cbvexfo 5763
Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.)
Hypothesis
Ref Expression
cbvfo.1 ((𝐹𝑥) = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvexfo (𝐹:𝐴onto𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐵 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐹,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐵(𝑥)

Proof of Theorem cbvexfo
StepHypRef Expression
1 fofn 5420 . . 3 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
2 cbvfo.1 . . . . . 6 ((𝐹𝑥) = 𝑦 → (𝜑𝜓))
32bicomd 140 . . . . 5 ((𝐹𝑥) = 𝑦 → (𝜓𝜑))
43eqcoms 2173 . . . 4 (𝑦 = (𝐹𝑥) → (𝜓𝜑))
54rexrn 5631 . . 3 (𝐹 Fn 𝐴 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 𝜑))
61, 5syl 14 . 2 (𝐹:𝐴onto𝐵 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 𝜑))
7 forn 5421 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
87rexeqdv 2672 . 2 (𝐹:𝐴onto𝐵 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑦𝐵 𝜓))
96, 8bitr3d 189 1 (𝐹:𝐴onto𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐵 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wrex 2449  ran crn 4610   Fn wfn 5191  ontowfo 5194  cfv 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fo 5202  df-fv 5204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator