| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvexfo | GIF version | ||
| Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.) |
| Ref | Expression |
|---|---|
| cbvfo.1 | ⊢ ((𝐹‘𝑥) = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvexfo | ⊢ (𝐹:𝐴–onto→𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofn 5552 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | cbvfo.1 | . . . . . 6 ⊢ ((𝐹‘𝑥) = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | bicomd 141 | . . . . 5 ⊢ ((𝐹‘𝑥) = 𝑦 → (𝜓 ↔ 𝜑)) |
| 4 | 3 | eqcoms 2232 | . . . 4 ⊢ (𝑦 = (𝐹‘𝑥) → (𝜓 ↔ 𝜑)) |
| 5 | 4 | rexrn 5774 | . . 3 ⊢ (𝐹 Fn 𝐴 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
| 6 | 1, 5 | syl 14 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜑)) |
| 7 | forn 5553 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 8 | 7 | rexeqdv 2735 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
| 9 | 6, 8 | bitr3d 190 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∃wrex 2509 ran crn 4720 Fn wfn 5313 –onto→wfo 5316 ‘cfv 5318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fo 5324 df-fv 5326 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |