ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexrn Unicode version

Theorem rexrn 5622
Description: Restricted existential quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
Hypothesis
Ref Expression
rexrn.1  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexrn  |-  ( F  Fn  A  ->  ( E. x  e.  ran  F
ph 
<->  E. y  e.  A  ps ) )
Distinct variable groups:    x, y, A   
x, F, y    ps, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem rexrn
StepHypRef Expression
1 funfvex 5503 . . 3  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( F `  y
)  e.  _V )
21funfni 5288 . 2  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( F `  y
)  e.  _V )
3 fvelrnb 5534 . . 3  |-  ( F  Fn  A  ->  (
x  e.  ran  F  <->  E. y  e.  A  ( F `  y )  =  x ) )
4 eqcom 2167 . . . 4  |-  ( ( F `  y )  =  x  <->  x  =  ( F `  y ) )
54rexbii 2473 . . 3  |-  ( E. y  e.  A  ( F `  y )  =  x  <->  E. y  e.  A  x  =  ( F `  y ) )
63, 5bitrdi 195 . 2  |-  ( F  Fn  A  ->  (
x  e.  ran  F  <->  E. y  e.  A  x  =  ( F `  y ) ) )
7 rexrn.1 . . 3  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
87adantl 275 . 2  |-  ( ( F  Fn  A  /\  x  =  ( F `  y ) )  -> 
( ph  <->  ps ) )
92, 6, 8rexxfr2d 4443 1  |-  ( F  Fn  A  ->  ( E. x  e.  ran  F
ph 
<->  E. y  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2445   _Vcvv 2726   ran crn 4605    Fn wfn 5183   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  elrnrexdm  5624  rexrnmpt  5628  cbvexfo  5754  rexanuz  10930  lmbr2  12854  lmff  12889
  Copyright terms: Public domain W3C validator