ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexrn Unicode version

Theorem rexrn 5717
Description: Restricted existential quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
Hypothesis
Ref Expression
rexrn.1  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexrn  |-  ( F  Fn  A  ->  ( E. x  e.  ran  F
ph 
<->  E. y  e.  A  ps ) )
Distinct variable groups:    x, y, A   
x, F, y    ps, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem rexrn
StepHypRef Expression
1 funfvex 5593 . . 3  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( F `  y
)  e.  _V )
21funfni 5376 . 2  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( F `  y
)  e.  _V )
3 fvelrnb 5626 . . 3  |-  ( F  Fn  A  ->  (
x  e.  ran  F  <->  E. y  e.  A  ( F `  y )  =  x ) )
4 eqcom 2207 . . . 4  |-  ( ( F `  y )  =  x  <->  x  =  ( F `  y ) )
54rexbii 2513 . . 3  |-  ( E. y  e.  A  ( F `  y )  =  x  <->  E. y  e.  A  x  =  ( F `  y ) )
63, 5bitrdi 196 . 2  |-  ( F  Fn  A  ->  (
x  e.  ran  F  <->  E. y  e.  A  x  =  ( F `  y ) ) )
7 rexrn.1 . . 3  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
87adantl 277 . 2  |-  ( ( F  Fn  A  /\  x  =  ( F `  y ) )  -> 
( ph  <->  ps ) )
92, 6, 8rexxfr2d 4512 1  |-  ( F  Fn  A  ->  ( E. x  e.  ran  F
ph 
<->  E. y  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   E.wrex 2485   _Vcvv 2772   ran crn 4676    Fn wfn 5266   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279
This theorem is referenced by:  elrnrexdm  5719  rexrnmpt  5723  cbvexfo  5855  rexanuz  11299  znunit  14421  lmbr2  14686  lmff  14721
  Copyright terms: Public domain W3C validator