ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemfp1 Unicode version

Theorem resqrexlemfp1 10621
Description: Lemma for resqrex 10638. Recursion rule. This sequence is the ancient method for computing square roots, often known as the babylonian method, although known to many ancient cultures. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemfp1  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  =  ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) )  /  2
) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemfp1
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnnuz 9212 . . . . . 6  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
21biimpi 119 . . . . 5  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  1 )
)
32adantl 273 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  N  e.  ( ZZ>= `  1 )
)
4 elnnuz 9212 . . . . . 6  |-  ( a  e.  NN  <->  a  e.  ( ZZ>= `  1 )
)
5 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
6 resqrexlemex.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
75, 6resqrexlem1arp 10617 . . . . . 6  |-  ( (
ph  /\  a  e.  NN )  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  a
)  e.  RR+ )
84, 7sylan2br 284 . . . . 5  |-  ( (
ph  /\  a  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  a )  e.  RR+ )
98adantlr 464 . . . 4  |-  ( ( ( ph  /\  N  e.  NN )  /\  a  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  a )  e.  RR+ )
105, 6resqrexlemp1rp 10618 . . . . 5  |-  ( (
ph  /\  ( a  e.  RR+  /\  b  e.  RR+ ) )  ->  (
a ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) b )  e.  RR+ )
1110adantlr 464 . . . 4  |-  ( ( ( ph  /\  N  e.  NN )  /\  (
a  e.  RR+  /\  b  e.  RR+ ) )  -> 
( a ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) b )  e.  RR+ )
123, 9, 11seq3p1 10076 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  (  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) ,  ( NN  X.  {
( 1  +  A
) } ) ) `
 ( N  + 
1 ) )  =  ( (  seq 1
( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) ,  ( NN  X.  { ( 1  +  A ) } ) ) `  N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) ( ( NN  X.  {
( 1  +  A
) } ) `  ( N  +  1
) ) ) )
13 resqrexlemex.seq . . . 4  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
1413fveq1i 5354 . . 3  |-  ( F `
 ( N  + 
1 ) )  =  (  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ) `  ( N  +  1 ) )
1513fveq1i 5354 . . . 4  |-  ( F `
 N )  =  (  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ) `  N )
1615oveq1i 5716 . . 3  |-  ( ( F `  N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ( ( NN  X.  { ( 1  +  A ) } ) `
 ( N  + 
1 ) ) )  =  ( (  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) ,  ( NN  X.  {
( 1  +  A
) } ) ) `
 N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ( ( NN  X.  { ( 1  +  A ) } ) `
 ( N  + 
1 ) ) )
1712, 14, 163eqtr4g 2157 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  =  ( ( F `  N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) ( ( NN  X.  {
( 1  +  A
) } ) `  ( N  +  1
) ) ) )
18 id 19 . . . . . . 7  |-  ( y  =  c  ->  y  =  c )
19 oveq2 5714 . . . . . . 7  |-  ( y  =  c  ->  ( A  /  y )  =  ( A  /  c
) )
2018, 19oveq12d 5724 . . . . . 6  |-  ( y  =  c  ->  (
y  +  ( A  /  y ) )  =  ( c  +  ( A  /  c
) ) )
2120oveq1d 5721 . . . . 5  |-  ( y  =  c  ->  (
( y  +  ( A  /  y ) )  /  2 )  =  ( ( c  +  ( A  / 
c ) )  / 
2 ) )
22 eqidd 2101 . . . . 5  |-  ( z  =  d  ->  (
( c  +  ( A  /  c ) )  /  2 )  =  ( ( c  +  ( A  / 
c ) )  / 
2 ) )
2321, 22cbvmpov 5783 . . . 4  |-  ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) )  =  ( c  e.  RR+ ,  d  e.  RR+  |->  ( ( c  +  ( A  /  c ) )  /  2 ) )
2423a1i 9 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) )  =  ( c  e.  RR+ ,  d  e.  RR+  |->  ( ( c  +  ( A  /  c ) )  /  2 ) ) )
25 id 19 . . . . . 6  |-  ( c  =  ( F `  N )  ->  c  =  ( F `  N ) )
26 oveq2 5714 . . . . . 6  |-  ( c  =  ( F `  N )  ->  ( A  /  c )  =  ( A  /  ( F `  N )
) )
2725, 26oveq12d 5724 . . . . 5  |-  ( c  =  ( F `  N )  ->  (
c  +  ( A  /  c ) )  =  ( ( F `
 N )  +  ( A  /  ( F `  N )
) ) )
2827oveq1d 5721 . . . 4  |-  ( c  =  ( F `  N )  ->  (
( c  +  ( A  /  c ) )  /  2 )  =  ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  / 
2 ) )
2928ad2antrl 477 . . 3  |-  ( ( ( ph  /\  N  e.  NN )  /\  (
c  =  ( F `
 N )  /\  d  =  ( ( NN  X.  { ( 1  +  A ) } ) `  ( N  +  1 ) ) ) )  ->  (
( c  +  ( A  /  c ) )  /  2 )  =  ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  / 
2 ) )
3013, 5, 6resqrexlemf 10619 . . . 4  |-  ( ph  ->  F : NN --> RR+ )
3130ffvelrnda 5487 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR+ )
32 peano2nn 8590 . . . 4  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
335, 6resqrexlem1arp 10617 . . . 4  |-  ( (
ph  /\  ( N  +  1 )  e.  NN )  ->  (
( NN  X.  {
( 1  +  A
) } ) `  ( N  +  1
) )  e.  RR+ )
3432, 33sylan2 282 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  ( N  +  1 ) )  e.  RR+ )
3531rpred 9330 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR )
365adantr 272 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  RR )
3736, 31rerpdivcld 9362 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  /  ( F `  N ) )  e.  RR )
3835, 37readdcld 7667 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  e.  RR )
3938rehalfcld 8818 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) )  /  2 )  e.  RR )
4024, 29, 31, 34, 39ovmpod 5830 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ( ( NN  X.  { ( 1  +  A ) } ) `
 ( N  + 
1 ) ) )  =  ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  / 
2 ) )
4117, 40eqtrd 2132 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  =  ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) )  /  2
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1299    e. wcel 1448   {csn 3474   class class class wbr 3875    X. cxp 4475   ` cfv 5059  (class class class)co 5706    e. cmpo 5708   RRcr 7499   0cc0 7500   1c1 7501    + caddc 7503    <_ cle 7673    / cdiv 8293   NNcn 8578   2c2 8629   ZZ>=cuz 9176   RR+crp 9291    seqcseq 10059
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-n0 8830  df-z 8907  df-uz 9177  df-rp 9292  df-seqfrec 10060
This theorem is referenced by:  resqrexlemover  10622  resqrexlemdec  10623  resqrexlemlo  10625  resqrexlemcalc1  10626
  Copyright terms: Public domain W3C validator