ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemfp1 Unicode version

Theorem resqrexlemfp1 11191
Description: Lemma for resqrex 11208. Recursion rule. This sequence is the ancient method for computing square roots, often known as the babylonian method, although known to many ancient cultures. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemfp1  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  =  ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) )  /  2
) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemfp1
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnnuz 9655 . . . . . 6  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
21biimpi 120 . . . . 5  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  1 )
)
32adantl 277 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  N  e.  ( ZZ>= `  1 )
)
4 elnnuz 9655 . . . . . 6  |-  ( a  e.  NN  <->  a  e.  ( ZZ>= `  1 )
)
5 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
6 resqrexlemex.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
75, 6resqrexlem1arp 11187 . . . . . 6  |-  ( (
ph  /\  a  e.  NN )  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  a
)  e.  RR+ )
84, 7sylan2br 288 . . . . 5  |-  ( (
ph  /\  a  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  a )  e.  RR+ )
98adantlr 477 . . . 4  |-  ( ( ( ph  /\  N  e.  NN )  /\  a  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  a )  e.  RR+ )
105, 6resqrexlemp1rp 11188 . . . . 5  |-  ( (
ph  /\  ( a  e.  RR+  /\  b  e.  RR+ ) )  ->  (
a ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) b )  e.  RR+ )
1110adantlr 477 . . . 4  |-  ( ( ( ph  /\  N  e.  NN )  /\  (
a  e.  RR+  /\  b  e.  RR+ ) )  -> 
( a ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) b )  e.  RR+ )
123, 9, 11seq3p1 10574 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  (  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) ,  ( NN  X.  {
( 1  +  A
) } ) ) `
 ( N  + 
1 ) )  =  ( (  seq 1
( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) ,  ( NN  X.  { ( 1  +  A ) } ) ) `  N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) ( ( NN  X.  {
( 1  +  A
) } ) `  ( N  +  1
) ) ) )
13 resqrexlemex.seq . . . 4  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
1413fveq1i 5562 . . 3  |-  ( F `
 ( N  + 
1 ) )  =  (  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ) `  ( N  +  1 ) )
1513fveq1i 5562 . . . 4  |-  ( F `
 N )  =  (  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ) `  N )
1615oveq1i 5935 . . 3  |-  ( ( F `  N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ( ( NN  X.  { ( 1  +  A ) } ) `
 ( N  + 
1 ) ) )  =  ( (  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) ,  ( NN  X.  {
( 1  +  A
) } ) ) `
 N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ( ( NN  X.  { ( 1  +  A ) } ) `
 ( N  + 
1 ) ) )
1712, 14, 163eqtr4g 2254 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  =  ( ( F `  N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) ( ( NN  X.  {
( 1  +  A
) } ) `  ( N  +  1
) ) ) )
18 id 19 . . . . . . 7  |-  ( y  =  c  ->  y  =  c )
19 oveq2 5933 . . . . . . 7  |-  ( y  =  c  ->  ( A  /  y )  =  ( A  /  c
) )
2018, 19oveq12d 5943 . . . . . 6  |-  ( y  =  c  ->  (
y  +  ( A  /  y ) )  =  ( c  +  ( A  /  c
) ) )
2120oveq1d 5940 . . . . 5  |-  ( y  =  c  ->  (
( y  +  ( A  /  y ) )  /  2 )  =  ( ( c  +  ( A  / 
c ) )  / 
2 ) )
22 eqidd 2197 . . . . 5  |-  ( z  =  d  ->  (
( c  +  ( A  /  c ) )  /  2 )  =  ( ( c  +  ( A  / 
c ) )  / 
2 ) )
2321, 22cbvmpov 6006 . . . 4  |-  ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) )  =  ( c  e.  RR+ ,  d  e.  RR+  |->  ( ( c  +  ( A  /  c ) )  /  2 ) )
2423a1i 9 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) )  =  ( c  e.  RR+ ,  d  e.  RR+  |->  ( ( c  +  ( A  /  c ) )  /  2 ) ) )
25 id 19 . . . . . 6  |-  ( c  =  ( F `  N )  ->  c  =  ( F `  N ) )
26 oveq2 5933 . . . . . 6  |-  ( c  =  ( F `  N )  ->  ( A  /  c )  =  ( A  /  ( F `  N )
) )
2725, 26oveq12d 5943 . . . . 5  |-  ( c  =  ( F `  N )  ->  (
c  +  ( A  /  c ) )  =  ( ( F `
 N )  +  ( A  /  ( F `  N )
) ) )
2827oveq1d 5940 . . . 4  |-  ( c  =  ( F `  N )  ->  (
( c  +  ( A  /  c ) )  /  2 )  =  ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  / 
2 ) )
2928ad2antrl 490 . . 3  |-  ( ( ( ph  /\  N  e.  NN )  /\  (
c  =  ( F `
 N )  /\  d  =  ( ( NN  X.  { ( 1  +  A ) } ) `  ( N  +  1 ) ) ) )  ->  (
( c  +  ( A  /  c ) )  /  2 )  =  ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  / 
2 ) )
3013, 5, 6resqrexlemf 11189 . . . 4  |-  ( ph  ->  F : NN --> RR+ )
3130ffvelcdmda 5700 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR+ )
32 peano2nn 9019 . . . 4  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
335, 6resqrexlem1arp 11187 . . . 4  |-  ( (
ph  /\  ( N  +  1 )  e.  NN )  ->  (
( NN  X.  {
( 1  +  A
) } ) `  ( N  +  1
) )  e.  RR+ )
3432, 33sylan2 286 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  ( N  +  1 ) )  e.  RR+ )
3531rpred 9788 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR )
365adantr 276 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  RR )
3736, 31rerpdivcld 9820 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  /  ( F `  N ) )  e.  RR )
3835, 37readdcld 8073 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  e.  RR )
3938rehalfcld 9255 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) )  /  2 )  e.  RR )
4024, 29, 31, 34, 39ovmpod 6054 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ( ( NN  X.  { ( 1  +  A ) } ) `
 ( N  + 
1 ) ) )  =  ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  / 
2 ) )
4117, 40eqtrd 2229 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  =  ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) )  /  2
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   {csn 3623   class class class wbr 4034    X. cxp 4662   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   RRcr 7895   0cc0 7896   1c1 7897    + caddc 7899    <_ cle 8079    / cdiv 8716   NNcn 9007   2c2 9058   ZZ>=cuz 9618   RR+crp 9745    seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-seqfrec 10557
This theorem is referenced by:  resqrexlemover  11192  resqrexlemdec  11193  resqrexlemlo  11195  resqrexlemcalc1  11196
  Copyright terms: Public domain W3C validator