ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemfp1 Unicode version

Theorem resqrexlemfp1 10973
Description: Lemma for resqrex 10990. Recursion rule. This sequence is the ancient method for computing square roots, often known as the babylonian method, although known to many ancient cultures. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemfp1  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  =  ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) )  /  2
) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemfp1
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnnuz 9523 . . . . . 6  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
21biimpi 119 . . . . 5  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  1 )
)
32adantl 275 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  N  e.  ( ZZ>= `  1 )
)
4 elnnuz 9523 . . . . . 6  |-  ( a  e.  NN  <->  a  e.  ( ZZ>= `  1 )
)
5 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
6 resqrexlemex.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
75, 6resqrexlem1arp 10969 . . . . . 6  |-  ( (
ph  /\  a  e.  NN )  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  a
)  e.  RR+ )
84, 7sylan2br 286 . . . . 5  |-  ( (
ph  /\  a  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  a )  e.  RR+ )
98adantlr 474 . . . 4  |-  ( ( ( ph  /\  N  e.  NN )  /\  a  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  a )  e.  RR+ )
105, 6resqrexlemp1rp 10970 . . . . 5  |-  ( (
ph  /\  ( a  e.  RR+  /\  b  e.  RR+ ) )  ->  (
a ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) b )  e.  RR+ )
1110adantlr 474 . . . 4  |-  ( ( ( ph  /\  N  e.  NN )  /\  (
a  e.  RR+  /\  b  e.  RR+ ) )  -> 
( a ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) b )  e.  RR+ )
123, 9, 11seq3p1 10418 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  (  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) ,  ( NN  X.  {
( 1  +  A
) } ) ) `
 ( N  + 
1 ) )  =  ( (  seq 1
( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) ,  ( NN  X.  { ( 1  +  A ) } ) ) `  N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) ( ( NN  X.  {
( 1  +  A
) } ) `  ( N  +  1
) ) ) )
13 resqrexlemex.seq . . . 4  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
1413fveq1i 5497 . . 3  |-  ( F `
 ( N  + 
1 ) )  =  (  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ) `  ( N  +  1 ) )
1513fveq1i 5497 . . . 4  |-  ( F `
 N )  =  (  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ) `  N )
1615oveq1i 5863 . . 3  |-  ( ( F `  N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ( ( NN  X.  { ( 1  +  A ) } ) `
 ( N  + 
1 ) ) )  =  ( (  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) ,  ( NN  X.  {
( 1  +  A
) } ) ) `
 N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ( ( NN  X.  { ( 1  +  A ) } ) `
 ( N  + 
1 ) ) )
1712, 14, 163eqtr4g 2228 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  =  ( ( F `  N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) ) ( ( NN  X.  {
( 1  +  A
) } ) `  ( N  +  1
) ) ) )
18 id 19 . . . . . . 7  |-  ( y  =  c  ->  y  =  c )
19 oveq2 5861 . . . . . . 7  |-  ( y  =  c  ->  ( A  /  y )  =  ( A  /  c
) )
2018, 19oveq12d 5871 . . . . . 6  |-  ( y  =  c  ->  (
y  +  ( A  /  y ) )  =  ( c  +  ( A  /  c
) ) )
2120oveq1d 5868 . . . . 5  |-  ( y  =  c  ->  (
( y  +  ( A  /  y ) )  /  2 )  =  ( ( c  +  ( A  / 
c ) )  / 
2 ) )
22 eqidd 2171 . . . . 5  |-  ( z  =  d  ->  (
( c  +  ( A  /  c ) )  /  2 )  =  ( ( c  +  ( A  / 
c ) )  / 
2 ) )
2321, 22cbvmpov 5933 . . . 4  |-  ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) )  =  ( c  e.  RR+ ,  d  e.  RR+  |->  ( ( c  +  ( A  /  c ) )  /  2 ) )
2423a1i 9 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  / 
y ) )  / 
2 ) )  =  ( c  e.  RR+ ,  d  e.  RR+  |->  ( ( c  +  ( A  /  c ) )  /  2 ) ) )
25 id 19 . . . . . 6  |-  ( c  =  ( F `  N )  ->  c  =  ( F `  N ) )
26 oveq2 5861 . . . . . 6  |-  ( c  =  ( F `  N )  ->  ( A  /  c )  =  ( A  /  ( F `  N )
) )
2725, 26oveq12d 5871 . . . . 5  |-  ( c  =  ( F `  N )  ->  (
c  +  ( A  /  c ) )  =  ( ( F `
 N )  +  ( A  /  ( F `  N )
) ) )
2827oveq1d 5868 . . . 4  |-  ( c  =  ( F `  N )  ->  (
( c  +  ( A  /  c ) )  /  2 )  =  ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  / 
2 ) )
2928ad2antrl 487 . . 3  |-  ( ( ( ph  /\  N  e.  NN )  /\  (
c  =  ( F `
 N )  /\  d  =  ( ( NN  X.  { ( 1  +  A ) } ) `  ( N  +  1 ) ) ) )  ->  (
( c  +  ( A  /  c ) )  /  2 )  =  ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  / 
2 ) )
3013, 5, 6resqrexlemf 10971 . . . 4  |-  ( ph  ->  F : NN --> RR+ )
3130ffvelrnda 5631 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR+ )
32 peano2nn 8890 . . . 4  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
335, 6resqrexlem1arp 10969 . . . 4  |-  ( (
ph  /\  ( N  +  1 )  e.  NN )  ->  (
( NN  X.  {
( 1  +  A
) } ) `  ( N  +  1
) )  e.  RR+ )
3432, 33sylan2 284 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( NN  X.  { ( 1  +  A ) } ) `  ( N  +  1 ) )  e.  RR+ )
3531rpred 9653 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR )
365adantr 274 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  RR )
3736, 31rerpdivcld 9685 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  /  ( F `  N ) )  e.  RR )
3835, 37readdcld 7949 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  e.  RR )
3938rehalfcld 9124 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) )  /  2 )  e.  RR )
4024, 29, 31, 34, 39ovmpod 5980 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ( ( NN  X.  { ( 1  +  A ) } ) `
 ( N  + 
1 ) ) )  =  ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  / 
2 ) )
4117, 40eqtrd 2203 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  =  ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) )  /  2
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   {csn 3583   class class class wbr 3989    X. cxp 4609   ` cfv 5198  (class class class)co 5853    e. cmpo 5855   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    <_ cle 7955    / cdiv 8589   NNcn 8878   2c2 8929   ZZ>=cuz 9487   RR+crp 9610    seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402
This theorem is referenced by:  resqrexlemover  10974  resqrexlemdec  10975  resqrexlemlo  10977  resqrexlemcalc1  10978
  Copyright terms: Public domain W3C validator