ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmpov GIF version

Theorem cbvmpov 5945
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 4093, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
cbvmpov.1 (𝑥 = 𝑧𝐶 = 𝐸)
cbvmpov.2 (𝑦 = 𝑤𝐸 = 𝐷)
Assertion
Ref Expression
cbvmpov (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐶,𝑧   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvmpov
StepHypRef Expression
1 nfcv 2317 . 2 𝑧𝐶
2 nfcv 2317 . 2 𝑤𝐶
3 nfcv 2317 . 2 𝑥𝐷
4 nfcv 2317 . 2 𝑦𝐷
5 cbvmpov.1 . . 3 (𝑥 = 𝑧𝐶 = 𝐸)
6 cbvmpov.2 . . 3 (𝑦 = 𝑤𝐸 = 𝐷)
75, 6sylan9eq 2228 . 2 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)
81, 2, 3, 4, 7cbvmpo 5944 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  cmpo 5867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-opab 4060  df-oprab 5869  df-mpo 5870
This theorem is referenced by:  frec2uzrdg  10379  frecuzrdgsuc  10384  iseqvalcbv  10427  resqrexlemfp1  10986  resqrex  11003  sqne2sq  12144  ennnfonelemnn0  12390  nninfdc  12421  txbas  13329  xmetxp  13578
  Copyright terms: Public domain W3C validator