ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmpov GIF version

Theorem cbvmpov 6075
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 4178, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
cbvmpov.1 (𝑥 = 𝑧𝐶 = 𝐸)
cbvmpov.2 (𝑦 = 𝑤𝐸 = 𝐷)
Assertion
Ref Expression
cbvmpov (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐶,𝑧   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvmpov
StepHypRef Expression
1 nfcv 2372 . 2 𝑧𝐶
2 nfcv 2372 . 2 𝑤𝐶
3 nfcv 2372 . 2 𝑥𝐷
4 nfcv 2372 . 2 𝑦𝐷
5 cbvmpov.1 . . 3 (𝑥 = 𝑧𝐶 = 𝐸)
6 cbvmpov.2 . . 3 (𝑦 = 𝑤𝐸 = 𝐷)
75, 6sylan9eq 2282 . 2 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)
81, 2, 3, 4, 7cbvmpo 6074 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  cmpo 5996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4145  df-oprab 5998  df-mpo 5999
This theorem is referenced by:  frec2uzrdg  10618  frecuzrdgsuc  10623  iseqvalcbv  10668  resqrexlemfp1  11506  resqrex  11523  sqne2sq  12685  ennnfonelemnn0  12979  nninfdc  13010  txbas  14917  xmetxp  15166  mpomulcn  15225
  Copyright terms: Public domain W3C validator