| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmpov | GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 4178, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| cbvmpov.1 | ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) |
| cbvmpov.2 | ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvmpov | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 | . 2 ⊢ Ⅎ𝑧𝐶 | |
| 2 | nfcv 2372 | . 2 ⊢ Ⅎ𝑤𝐶 | |
| 3 | nfcv 2372 | . 2 ⊢ Ⅎ𝑥𝐷 | |
| 4 | nfcv 2372 | . 2 ⊢ Ⅎ𝑦𝐷 | |
| 5 | cbvmpov.1 | . . 3 ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) | |
| 6 | cbvmpov.2 | . . 3 ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) | |
| 7 | 5, 6 | sylan9eq 2282 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
| 8 | 1, 2, 3, 4, 7 | cbvmpo 6074 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ cmpo 5996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-oprab 5998 df-mpo 5999 |
| This theorem is referenced by: frec2uzrdg 10618 frecuzrdgsuc 10623 iseqvalcbv 10668 resqrexlemfp1 11506 resqrex 11523 sqne2sq 12685 ennnfonelemnn0 12979 nninfdc 13010 txbas 14917 xmetxp 15166 mpomulcn 15225 |
| Copyright terms: Public domain | W3C validator |