| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmpov | GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 4129, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| cbvmpov.1 | ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) |
| cbvmpov.2 | ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvmpov | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 | . 2 ⊢ Ⅎ𝑧𝐶 | |
| 2 | nfcv 2339 | . 2 ⊢ Ⅎ𝑤𝐶 | |
| 3 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐷 | |
| 4 | nfcv 2339 | . 2 ⊢ Ⅎ𝑦𝐷 | |
| 5 | cbvmpov.1 | . . 3 ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) | |
| 6 | cbvmpov.2 | . . 3 ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) | |
| 7 | 5, 6 | sylan9eq 2249 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
| 8 | 1, 2, 3, 4, 7 | cbvmpo 6005 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ cmpo 5927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-opab 4096 df-oprab 5929 df-mpo 5930 |
| This theorem is referenced by: frec2uzrdg 10518 frecuzrdgsuc 10523 iseqvalcbv 10568 resqrexlemfp1 11191 resqrex 11208 sqne2sq 12370 ennnfonelemnn0 12664 nninfdc 12695 txbas 14578 xmetxp 14827 mpomulcn 14886 |
| Copyright terms: Public domain | W3C validator |