ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvprodv Unicode version

Theorem cbvprodv 11705
Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
cbvprod.1  |-  ( j  =  k  ->  B  =  C )
Assertion
Ref Expression
cbvprodv  |-  prod_ j  e.  A  B  =  prod_ k  e.  A  C
Distinct variable groups:    j, k, A    B, k    C, j
Allowed substitution hints:    B( j)    C( k)

Proof of Theorem cbvprodv
StepHypRef Expression
1 cbvprod.1 . 2  |-  ( j  =  k  ->  B  =  C )
2 nfcv 2336 . 2  |-  F/_ k A
3 nfcv 2336 . 2  |-  F/_ j A
4 nfcv 2336 . 2  |-  F/_ k B
5 nfcv 2336 . 2  |-  F/_ j C
61, 2, 3, 4, 5cbvprod 11704 1  |-  prod_ j  e.  A  B  =  prod_ k  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   prod_cprod 11696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-cnv 4668  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-recs 6360  df-frec 6446  df-seqfrec 10522  df-proddc 11697
This theorem is referenced by:  eulerthlemth  12373
  Copyright terms: Public domain W3C validator