ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerthlemth Unicode version

Theorem eulerthlemth 12186
Description: Lemma for eulerth 12187. The result. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
Hypotheses
Ref Expression
eulerth.1  |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
eulerth.2  |-  S  =  { y  e.  ( 0..^ N )  |  ( y  gcd  N
)  =  1 }
eulerth.4  |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) -1-1-onto-> S )
Assertion
Ref Expression
eulerthlemth  |-  ( ph  ->  ( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N ) )
Distinct variable groups:    y, A    y, F    y, N    ph, y
Allowed substitution hint:    S( y)

Proof of Theorem eulerthlemth
Dummy variables  u  v  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerth.1 . . . . . 6  |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
2 eulerth.2 . . . . . 6  |-  S  =  { y  e.  ( 0..^ N )  |  ( y  gcd  N
)  =  1 }
3 eulerth.4 . . . . . 6  |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) -1-1-onto-> S )
41, 2, 3eulerthlema 12184 . . . . 5  |-  ( ph  ->  ( ( ( A ^ ( phi `  N ) )  x. 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) )  mod  N )  =  ( prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x ) )  mod  N )  mod  N ) )
51simp1d 1004 . . . . . 6  |-  ( ph  ->  N  e.  NN )
61simp2d 1005 . . . . . . . 8  |-  ( ph  ->  A  e.  ZZ )
75phicld 12172 . . . . . . . . 9  |-  ( ph  ->  ( phi `  N
)  e.  NN )
87nnnn0d 9188 . . . . . . . 8  |-  ( ph  ->  ( phi `  N
)  e.  NN0 )
9 zexpcl 10491 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( phi `  N )  e.  NN0 )  -> 
( A ^ ( phi `  N ) )  e.  ZZ )
106, 8, 9syl2anc 409 . . . . . . 7  |-  ( ph  ->  ( A ^ ( phi `  N ) )  e.  ZZ )
11 1zzd 9239 . . . . . . . . 9  |-  ( ph  ->  1  e.  ZZ )
127nnzd 9333 . . . . . . . . 9  |-  ( ph  ->  ( phi `  N
)  e.  ZZ )
1311, 12fzfigd 10387 . . . . . . . 8  |-  ( ph  ->  ( 1 ... ( phi `  N ) )  e.  Fin )
14 ssrab2 3232 . . . . . . . . . . 11  |-  { y  e.  ( 0..^ N )  |  ( y  gcd  N )  =  1 }  C_  (
0..^ N )
152, 14eqsstri 3179 . . . . . . . . . 10  |-  S  C_  ( 0..^ N )
16 fzo0ssnn0 10171 . . . . . . . . . . 11  |-  ( 0..^ N )  C_  NN0
17 nn0ssz 9230 . . . . . . . . . . 11  |-  NN0  C_  ZZ
1816, 17sstri 3156 . . . . . . . . . 10  |-  ( 0..^ N )  C_  ZZ
1915, 18sstri 3156 . . . . . . . . 9  |-  S  C_  ZZ
20 f1of 5442 . . . . . . . . . . 11  |-  ( F : ( 1 ... ( phi `  N
) ) -1-1-onto-> S  ->  F :
( 1 ... ( phi `  N ) ) --> S )
213, 20syl 14 . . . . . . . . . 10  |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) --> S )
2221ffvelrnda 5631 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( F `  x )  e.  S
)
2319, 22sselid 3145 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( F `  x )  e.  ZZ )
2413, 23fprodzcl 11572 . . . . . . 7  |-  ( ph  ->  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x )  e.  ZZ )
2510, 24zmulcld 9340 . . . . . 6  |-  ( ph  ->  ( ( A ^
( phi `  N
) )  x.  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  e.  ZZ )
26 fveq2 5496 . . . . . . . . 9  |-  ( z  =  ( `' F `  ( ( A  x.  ( F `  x ) )  mod  N ) )  ->  ( F `  z )  =  ( F `  ( `' F `  ( ( A  x.  ( F `
 x ) )  mod  N ) ) ) )
27 eqid 2170 . . . . . . . . . 10  |-  ( `' F  o.  ( y  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 y ) )  mod  N ) ) )  =  ( `' F  o.  ( y  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 y ) )  mod  N ) ) )
281, 2, 3, 27eulerthlemh 12185 . . . . . . . . 9  |-  ( ph  ->  ( `' F  o.  ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) ) : ( 1 ... ( phi `  N ) ) -1-1-onto-> ( 1 ... ( phi `  N ) ) )
29 eqid 2170 . . . . . . . . . . . . 13  |-  ( 1 ... ( phi `  N ) )  =  ( 1 ... ( phi `  N ) )
30 fveq2 5496 . . . . . . . . . . . . . . . 16  |-  ( v  =  u  ->  ( F `  v )  =  ( F `  u ) )
3130oveq2d 5869 . . . . . . . . . . . . . . 15  |-  ( v  =  u  ->  ( A  x.  ( F `  v ) )  =  ( A  x.  ( F `  u )
) )
3231oveq1d 5868 . . . . . . . . . . . . . 14  |-  ( v  =  u  ->  (
( A  x.  ( F `  v )
)  mod  N )  =  ( ( A  x.  ( F `  u ) )  mod 
N ) )
3332cbvmptv 4085 . . . . . . . . . . . . 13  |-  ( v  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 v ) )  mod  N ) )  =  ( u  e.  ( 1 ... ( phi `  N ) ) 
|->  ( ( A  x.  ( F `  u ) )  mod  N ) )
341, 2, 29, 3, 33eulerthlem1 12181 . . . . . . . . . . . 12  |-  ( ph  ->  ( v  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  v )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) --> S )
35 fveq2 5496 . . . . . . . . . . . . . . . 16  |-  ( v  =  y  ->  ( F `  v )  =  ( F `  y ) )
3635oveq2d 5869 . . . . . . . . . . . . . . 15  |-  ( v  =  y  ->  ( A  x.  ( F `  v ) )  =  ( A  x.  ( F `  y )
) )
3736oveq1d 5868 . . . . . . . . . . . . . 14  |-  ( v  =  y  ->  (
( A  x.  ( F `  v )
)  mod  N )  =  ( ( A  x.  ( F `  y ) )  mod 
N ) )
3837cbvmptv 4085 . . . . . . . . . . . . 13  |-  ( v  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 v ) )  mod  N ) )  =  ( y  e.  ( 1 ... ( phi `  N ) ) 
|->  ( ( A  x.  ( F `  y ) )  mod  N ) )
3938feq1i 5340 . . . . . . . . . . . 12  |-  ( ( v  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  v )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) --> S  <-> 
( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) --> S )
4034, 39sylib 121 . . . . . . . . . . 11  |-  ( ph  ->  ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) --> S )
41 fvco3 5567 . . . . . . . . . . 11  |-  ( ( ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) --> S  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( `' F  o.  ( y  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 y ) )  mod  N ) ) ) `  x )  =  ( `' F `  ( ( y  e.  ( 1 ... ( phi `  N ) ) 
|->  ( ( A  x.  ( F `  y ) )  mod  N ) ) `  x ) ) )
4240, 41sylan 281 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( `' F  o.  (
y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) ) `  x
)  =  ( `' F `  ( ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) `  x )
) )
43 eqid 2170 . . . . . . . . . . . 12  |-  ( y  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 y ) )  mod  N ) )  =  ( y  e.  ( 1 ... ( phi `  N ) ) 
|->  ( ( A  x.  ( F `  y ) )  mod  N ) )
44 fveq2 5496 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
4544oveq2d 5869 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  ( A  x.  ( F `  y ) )  =  ( A  x.  ( F `  x )
) )
4645oveq1d 5868 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (
( A  x.  ( F `  y )
)  mod  N )  =  ( ( A  x.  ( F `  x ) )  mod 
N ) )
47 simpr 109 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  x  e.  ( 1 ... ( phi `  N ) ) )
486adantr 274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  A  e.  ZZ )
4948, 23zmulcld 9340 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( A  x.  ( F `  x
) )  e.  ZZ )
505adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  N  e.  NN )
51 zmodfzo 10303 . . . . . . . . . . . . 13  |-  ( ( ( A  x.  ( F `  x )
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( A  x.  ( F `  x ) )  mod  N )  e.  ( 0..^ N ) )
5249, 50, 51syl2anc 409 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( A  x.  ( F `  x ) )  mod 
N )  e.  ( 0..^ N ) )
5343, 46, 47, 52fvmptd3 5589 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( (
y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) `  x )  =  ( ( A  x.  ( F `  x ) )  mod 
N ) )
5453fveq2d 5500 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( `' F `  ( (
y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) `  x )
)  =  ( `' F `  ( ( A  x.  ( F `
 x ) )  mod  N ) ) )
5542, 54eqtrd 2203 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( `' F  o.  (
y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) ) `  x
)  =  ( `' F `  ( ( A  x.  ( F `
 x ) )  mod  N ) ) )
5621ffvelrnda 5631 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( 1 ... ( phi `  N ) ) )  ->  ( F `  z )  e.  S
)
5719, 56sselid 3145 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( 1 ... ( phi `  N ) ) )  ->  ( F `  z )  e.  ZZ )
5857zcnd 9335 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( 1 ... ( phi `  N ) ) )  ->  ( F `  z )  e.  CC )
5926, 13, 28, 55, 58fprodf1o 11551 . . . . . . . 8  |-  ( ph  ->  prod_ z  e.  ( 1 ... ( phi `  N ) ) ( F `  z )  =  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  ( `' F `  ( ( A  x.  ( F `
 x ) )  mod  N ) ) ) )
603adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  F :
( 1 ... ( phi `  N ) ) -1-1-onto-> S )
61 modgcd 11946 . . . . . . . . . . . . 13  |-  ( ( ( A  x.  ( F `  x )
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( A  x.  ( F `  x ) )  mod 
N )  gcd  N
)  =  ( ( A  x.  ( F `
 x ) )  gcd  N ) )
6249, 50, 61syl2anc 409 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( (
( A  x.  ( F `  x )
)  mod  N )  gcd  N )  =  ( ( A  x.  ( F `  x )
)  gcd  N )
)
6350nnzd 9333 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  N  e.  ZZ )
6463, 49gcdcomd 11929 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( N  gcd  ( A  x.  ( F `  x )
) )  =  ( ( A  x.  ( F `  x )
)  gcd  N )
)
655nnzd 9333 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  ZZ )
666, 65gcdcomd 11929 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  gcd  N
)  =  ( N  gcd  A ) )
671simp3d 1006 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  gcd  N
)  =  1 )
6866, 67eqtr3d 2205 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( N  gcd  A
)  =  1 )
6968adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( N  gcd  A )  =  1 )
7023, 63gcdcomd 11929 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( F `  x )  gcd  N )  =  ( N  gcd  ( F `
 x ) ) )
71 oveq1 5860 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( F `  x )  ->  (
y  gcd  N )  =  ( ( F `
 x )  gcd 
N ) )
7271eqeq1d 2179 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( F `  x )  ->  (
( y  gcd  N
)  =  1  <->  (
( F `  x
)  gcd  N )  =  1 ) )
7372, 2elrab2 2889 . . . . . . . . . . . . . . . 16  |-  ( ( F `  x )  e.  S  <->  ( ( F `  x )  e.  ( 0..^ N )  /\  ( ( F `
 x )  gcd 
N )  =  1 ) )
7422, 73sylib 121 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( F `  x )  e.  ( 0..^ N )  /\  ( ( F `
 x )  gcd 
N )  =  1 ) )
7574simprd 113 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( F `  x )  gcd  N )  =  1 )
7670, 75eqtr3d 2205 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( N  gcd  ( F `  x
) )  =  1 )
77 rpmul 12052 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  A  e.  ZZ  /\  ( F `  x )  e.  ZZ )  ->  (
( ( N  gcd  A )  =  1  /\  ( N  gcd  ( F `  x )
)  =  1 )  ->  ( N  gcd  ( A  x.  ( F `  x )
) )  =  1 ) )
7863, 48, 23, 77syl3anc 1233 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( (
( N  gcd  A
)  =  1  /\  ( N  gcd  ( F `  x )
)  =  1 )  ->  ( N  gcd  ( A  x.  ( F `  x )
) )  =  1 ) )
7969, 76, 78mp2and 431 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( N  gcd  ( A  x.  ( F `  x )
) )  =  1 )
8062, 64, 793eqtr2d 2209 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( (
( A  x.  ( F `  x )
)  mod  N )  gcd  N )  =  1 )
81 oveq1 5860 . . . . . . . . . . . . 13  |-  ( y  =  ( ( A  x.  ( F `  x ) )  mod 
N )  ->  (
y  gcd  N )  =  ( ( ( A  x.  ( F `
 x ) )  mod  N )  gcd 
N ) )
8281eqeq1d 2179 . . . . . . . . . . . 12  |-  ( y  =  ( ( A  x.  ( F `  x ) )  mod 
N )  ->  (
( y  gcd  N
)  =  1  <->  (
( ( A  x.  ( F `  x ) )  mod  N )  gcd  N )  =  1 ) )
8382, 2elrab2 2889 . . . . . . . . . . 11  |-  ( ( ( A  x.  ( F `  x )
)  mod  N )  e.  S  <->  ( ( ( A  x.  ( F `
 x ) )  mod  N )  e.  ( 0..^ N )  /\  ( ( ( A  x.  ( F `
 x ) )  mod  N )  gcd 
N )  =  1 ) )
8452, 80, 83sylanbrc 415 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( A  x.  ( F `  x ) )  mod 
N )  e.  S
)
85 f1ocnvfv2 5757 . . . . . . . . . 10  |-  ( ( F : ( 1 ... ( phi `  N ) ) -1-1-onto-> S  /\  ( ( A  x.  ( F `  x ) )  mod  N )  e.  S )  -> 
( F `  ( `' F `  ( ( A  x.  ( F `
 x ) )  mod  N ) ) )  =  ( ( A  x.  ( F `
 x ) )  mod  N ) )
8660, 84, 85syl2anc 409 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( F `  ( `' F `  ( ( A  x.  ( F `  x ) )  mod  N ) ) )  =  ( ( A  x.  ( F `  x )
)  mod  N )
)
8786prodeq2dv 11529 . . . . . . . 8  |-  ( ph  ->  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  ( `' F `  ( ( A  x.  ( F `
 x ) )  mod  N ) ) )  =  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x ) )  mod  N ) )
8859, 87eqtr2d 2204 . . . . . . 7  |-  ( ph  ->  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x )
)  mod  N )  =  prod_ z  e.  ( 1 ... ( phi `  N ) ) ( F `  z ) )
89 fveq2 5496 . . . . . . . . 9  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
9089cbvprodv 11522 . . . . . . . 8  |-  prod_ z  e.  ( 1 ... ( phi `  N ) ) ( F `  z
)  =  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x
)
9190, 24eqeltrid 2257 . . . . . . 7  |-  ( ph  ->  prod_ z  e.  ( 1 ... ( phi `  N ) ) ( F `  z )  e.  ZZ )
9288, 91eqeltrd 2247 . . . . . 6  |-  ( ph  ->  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x )
)  mod  N )  e.  ZZ )
93 moddvds 11761 . . . . . 6  |-  ( ( N  e.  NN  /\  ( ( A ^
( phi `  N
) )  x.  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  e.  ZZ  /\  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( ( A  x.  ( F `
 x ) )  mod  N )  e.  ZZ )  ->  (
( ( ( A ^ ( phi `  N ) )  x. 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) )  mod  N )  =  ( prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x ) )  mod  N )  mod  N )  <->  N  ||  (
( ( A ^
( phi `  N
) )  x.  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  -  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x )
)  mod  N )
) ) )
945, 25, 92, 93syl3anc 1233 . . . . 5  |-  ( ph  ->  ( ( ( ( A ^ ( phi `  N ) )  x. 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) )  mod  N )  =  ( prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x ) )  mod  N )  mod  N )  <->  N  ||  (
( ( A ^
( phi `  N
) )  x.  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  -  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x )
)  mod  N )
) ) )
954, 94mpbid 146 . . . 4  |-  ( ph  ->  N  ||  ( ( ( A ^ ( phi `  N ) )  x.  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x ) )  -  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x ) )  mod  N ) ) )
9624zcnd 9335 . . . . . . . 8  |-  ( ph  ->  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x )  e.  CC )
9796mulid2d 7938 . . . . . . 7  |-  ( ph  ->  ( 1  x.  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  =  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x ) )
9890, 88, 973eqtr4a 2229 . . . . . 6  |-  ( ph  ->  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x )
)  mod  N )  =  ( 1  x. 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) ) )
9998oveq2d 5869 . . . . 5  |-  ( ph  ->  ( ( ( A ^ ( phi `  N ) )  x. 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) )  -  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x ) )  mod  N ) )  =  ( ( ( A ^ ( phi `  N ) )  x.  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x ) )  -  ( 1  x.  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x ) ) ) )
10010zcnd 9335 . . . . . 6  |-  ( ph  ->  ( A ^ ( phi `  N ) )  e.  CC )
101 ax-1cn 7867 . . . . . . 7  |-  1  e.  CC
102 subdir 8305 . . . . . . 7  |-  ( ( ( A ^ ( phi `  N ) )  e.  CC  /\  1  e.  CC  /\  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x
)  e.  CC )  ->  ( ( ( A ^ ( phi `  N ) )  - 
1 )  x.  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  =  ( ( ( A ^ ( phi `  N ) )  x. 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) )  -  ( 1  x.  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x ) ) ) )
103101, 102mp3an2 1320 . . . . . 6  |-  ( ( ( A ^ ( phi `  N ) )  e.  CC  /\  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x )  e.  CC )  ->  (
( ( A ^
( phi `  N
) )  -  1 )  x.  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x
) )  =  ( ( ( A ^
( phi `  N
) )  x.  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  -  ( 1  x. 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) ) ) )
104100, 96, 103syl2anc 409 . . . . 5  |-  ( ph  ->  ( ( ( A ^ ( phi `  N ) )  - 
1 )  x.  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  =  ( ( ( A ^ ( phi `  N ) )  x. 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) )  -  ( 1  x.  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x ) ) ) )
10510, 11zsubcld 9339 . . . . . . 7  |-  ( ph  ->  ( ( A ^
( phi `  N
) )  -  1 )  e.  ZZ )
106105zcnd 9335 . . . . . 6  |-  ( ph  ->  ( ( A ^
( phi `  N
) )  -  1 )  e.  CC )
107106, 96mulcomd 7941 . . . . 5  |-  ( ph  ->  ( ( ( A ^ ( phi `  N ) )  - 
1 )  x.  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  =  ( prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x
)  x.  ( ( A ^ ( phi `  N ) )  - 
1 ) ) )
10899, 104, 1073eqtr2d 2209 . . . 4  |-  ( ph  ->  ( ( ( A ^ ( phi `  N ) )  x. 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) )  -  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x ) )  mod  N ) )  =  ( prod_
x  e.  ( 1 ... ( phi `  N ) ) ( F `  x )  x.  ( ( A ^ ( phi `  N ) )  - 
1 ) ) )
10995, 108breqtrd 4015 . . 3  |-  ( ph  ->  N  ||  ( prod_
x  e.  ( 1 ... ( phi `  N ) ) ( F `  x )  x.  ( ( A ^ ( phi `  N ) )  - 
1 ) ) )
1101, 2, 3eulerthlemrprm 12183 . . 3  |-  ( ph  ->  ( N  gcd  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  =  1 )
111 coprmdvds 12046 . . . 4  |-  ( ( N  e.  ZZ  /\  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x )  e.  ZZ  /\  (
( A ^ ( phi `  N ) )  -  1 )  e.  ZZ )  ->  (
( N  ||  ( prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x )  x.  ( ( A ^ ( phi `  N ) )  - 
1 ) )  /\  ( N  gcd  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x
) )  =  1 )  ->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
11265, 24, 105, 111syl3anc 1233 . . 3  |-  ( ph  ->  ( ( N  ||  ( prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x )  x.  ( ( A ^ ( phi `  N ) )  - 
1 ) )  /\  ( N  gcd  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x
) )  =  1 )  ->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
113109, 110, 112mp2and 431 . 2  |-  ( ph  ->  N  ||  ( ( A ^ ( phi `  N ) )  - 
1 ) )
114 1z 9238 . . . 4  |-  1  e.  ZZ
115 moddvds 11761 . . . 4  |-  ( ( N  e.  NN  /\  ( A ^ ( phi `  N ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
116114, 115mp3an3 1321 . . 3  |-  ( ( N  e.  NN  /\  ( A ^ ( phi `  N ) )  e.  ZZ )  ->  (
( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
1175, 10, 116syl2anc 409 . 2  |-  ( ph  ->  ( ( ( A ^ ( phi `  N ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( phi `  N ) )  - 
1 ) ) )
118113, 117mpbird 166 1  |-  ( ph  ->  ( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   {crab 2452   class class class wbr 3989    |-> cmpt 4050   `'ccnv 4610    o. ccom 4615   -->wf 5194   -1-1-onto->wf1o 5197   ` cfv 5198  (class class class)co 5853   CCcc 7772   0cc0 7774   1c1 7775    x. cmul 7779    - cmin 8090   NNcn 8878   NN0cn0 9135   ZZcz 9212   ...cfz 9965  ..^cfzo 10098    mod cmo 10278   ^cexp 10475   prod_cprod 11513    || cdvds 11749    gcd cgcd 11897   phicphi 12163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514  df-dvds 11750  df-gcd 11898  df-phi 12165
This theorem is referenced by:  eulerth  12187
  Copyright terms: Public domain W3C validator