ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerthlemth Unicode version

Theorem eulerthlemth 12095
Description: Lemma for eulerth 12096. The result. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
Hypotheses
Ref Expression
eulerth.1  |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
eulerth.2  |-  S  =  { y  e.  ( 0..^ N )  |  ( y  gcd  N
)  =  1 }
eulerth.4  |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) -1-1-onto-> S )
Assertion
Ref Expression
eulerthlemth  |-  ( ph  ->  ( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N ) )
Distinct variable groups:    y, A    y, F    y, N    ph, y
Allowed substitution hint:    S( y)

Proof of Theorem eulerthlemth
Dummy variables  u  v  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerth.1 . . . . . 6  |-  ( ph  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
2 eulerth.2 . . . . . 6  |-  S  =  { y  e.  ( 0..^ N )  |  ( y  gcd  N
)  =  1 }
3 eulerth.4 . . . . . 6  |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) -1-1-onto-> S )
41, 2, 3eulerthlema 12093 . . . . 5  |-  ( ph  ->  ( ( ( A ^ ( phi `  N ) )  x. 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) )  mod  N )  =  ( prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x ) )  mod  N )  mod  N ) )
51simp1d 994 . . . . . 6  |-  ( ph  ->  N  e.  NN )
61simp2d 995 . . . . . . . 8  |-  ( ph  ->  A  e.  ZZ )
75phicld 12081 . . . . . . . . 9  |-  ( ph  ->  ( phi `  N
)  e.  NN )
87nnnn0d 9137 . . . . . . . 8  |-  ( ph  ->  ( phi `  N
)  e.  NN0 )
9 zexpcl 10427 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( phi `  N )  e.  NN0 )  -> 
( A ^ ( phi `  N ) )  e.  ZZ )
106, 8, 9syl2anc 409 . . . . . . 7  |-  ( ph  ->  ( A ^ ( phi `  N ) )  e.  ZZ )
11 1zzd 9188 . . . . . . . . 9  |-  ( ph  ->  1  e.  ZZ )
127nnzd 9279 . . . . . . . . 9  |-  ( ph  ->  ( phi `  N
)  e.  ZZ )
1311, 12fzfigd 10323 . . . . . . . 8  |-  ( ph  ->  ( 1 ... ( phi `  N ) )  e.  Fin )
14 ssrab2 3213 . . . . . . . . . . 11  |-  { y  e.  ( 0..^ N )  |  ( y  gcd  N )  =  1 }  C_  (
0..^ N )
152, 14eqsstri 3160 . . . . . . . . . 10  |-  S  C_  ( 0..^ N )
16 fzo0ssnn0 10107 . . . . . . . . . . 11  |-  ( 0..^ N )  C_  NN0
17 nn0ssz 9179 . . . . . . . . . . 11  |-  NN0  C_  ZZ
1816, 17sstri 3137 . . . . . . . . . 10  |-  ( 0..^ N )  C_  ZZ
1915, 18sstri 3137 . . . . . . . . 9  |-  S  C_  ZZ
20 f1of 5413 . . . . . . . . . . 11  |-  ( F : ( 1 ... ( phi `  N
) ) -1-1-onto-> S  ->  F :
( 1 ... ( phi `  N ) ) --> S )
213, 20syl 14 . . . . . . . . . 10  |-  ( ph  ->  F : ( 1 ... ( phi `  N ) ) --> S )
2221ffvelrnda 5601 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( F `  x )  e.  S
)
2319, 22sseldi 3126 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( F `  x )  e.  ZZ )
2413, 23fprodzcl 11499 . . . . . . 7  |-  ( ph  ->  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x )  e.  ZZ )
2510, 24zmulcld 9286 . . . . . 6  |-  ( ph  ->  ( ( A ^
( phi `  N
) )  x.  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  e.  ZZ )
26 fveq2 5467 . . . . . . . . 9  |-  ( z  =  ( `' F `  ( ( A  x.  ( F `  x ) )  mod  N ) )  ->  ( F `  z )  =  ( F `  ( `' F `  ( ( A  x.  ( F `
 x ) )  mod  N ) ) ) )
27 eqid 2157 . . . . . . . . . 10  |-  ( `' F  o.  ( y  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 y ) )  mod  N ) ) )  =  ( `' F  o.  ( y  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 y ) )  mod  N ) ) )
281, 2, 3, 27eulerthlemh 12094 . . . . . . . . 9  |-  ( ph  ->  ( `' F  o.  ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) ) : ( 1 ... ( phi `  N ) ) -1-1-onto-> ( 1 ... ( phi `  N ) ) )
29 eqid 2157 . . . . . . . . . . . . 13  |-  ( 1 ... ( phi `  N ) )  =  ( 1 ... ( phi `  N ) )
30 fveq2 5467 . . . . . . . . . . . . . . . 16  |-  ( v  =  u  ->  ( F `  v )  =  ( F `  u ) )
3130oveq2d 5837 . . . . . . . . . . . . . . 15  |-  ( v  =  u  ->  ( A  x.  ( F `  v ) )  =  ( A  x.  ( F `  u )
) )
3231oveq1d 5836 . . . . . . . . . . . . . 14  |-  ( v  =  u  ->  (
( A  x.  ( F `  v )
)  mod  N )  =  ( ( A  x.  ( F `  u ) )  mod 
N ) )
3332cbvmptv 4060 . . . . . . . . . . . . 13  |-  ( v  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 v ) )  mod  N ) )  =  ( u  e.  ( 1 ... ( phi `  N ) ) 
|->  ( ( A  x.  ( F `  u ) )  mod  N ) )
341, 2, 29, 3, 33eulerthlem1 12090 . . . . . . . . . . . 12  |-  ( ph  ->  ( v  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  v )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) --> S )
35 fveq2 5467 . . . . . . . . . . . . . . . 16  |-  ( v  =  y  ->  ( F `  v )  =  ( F `  y ) )
3635oveq2d 5837 . . . . . . . . . . . . . . 15  |-  ( v  =  y  ->  ( A  x.  ( F `  v ) )  =  ( A  x.  ( F `  y )
) )
3736oveq1d 5836 . . . . . . . . . . . . . 14  |-  ( v  =  y  ->  (
( A  x.  ( F `  v )
)  mod  N )  =  ( ( A  x.  ( F `  y ) )  mod 
N ) )
3837cbvmptv 4060 . . . . . . . . . . . . 13  |-  ( v  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 v ) )  mod  N ) )  =  ( y  e.  ( 1 ... ( phi `  N ) ) 
|->  ( ( A  x.  ( F `  y ) )  mod  N ) )
3938feq1i 5311 . . . . . . . . . . . 12  |-  ( ( v  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  v )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) --> S  <-> 
( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) --> S )
4034, 39sylib 121 . . . . . . . . . . 11  |-  ( ph  ->  ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) --> S )
41 fvco3 5538 . . . . . . . . . . 11  |-  ( ( ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) : ( 1 ... ( phi `  N ) ) --> S  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( `' F  o.  ( y  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 y ) )  mod  N ) ) ) `  x )  =  ( `' F `  ( ( y  e.  ( 1 ... ( phi `  N ) ) 
|->  ( ( A  x.  ( F `  y ) )  mod  N ) ) `  x ) ) )
4240, 41sylan 281 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( `' F  o.  (
y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) ) `  x
)  =  ( `' F `  ( ( y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) `  x )
) )
43 eqid 2157 . . . . . . . . . . . 12  |-  ( y  e.  ( 1 ... ( phi `  N
) )  |->  ( ( A  x.  ( F `
 y ) )  mod  N ) )  =  ( y  e.  ( 1 ... ( phi `  N ) ) 
|->  ( ( A  x.  ( F `  y ) )  mod  N ) )
44 fveq2 5467 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
4544oveq2d 5837 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  ( A  x.  ( F `  y ) )  =  ( A  x.  ( F `  x )
) )
4645oveq1d 5836 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (
( A  x.  ( F `  y )
)  mod  N )  =  ( ( A  x.  ( F `  x ) )  mod 
N ) )
47 simpr 109 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  x  e.  ( 1 ... ( phi `  N ) ) )
486adantr 274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  A  e.  ZZ )
4948, 23zmulcld 9286 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( A  x.  ( F `  x
) )  e.  ZZ )
505adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  N  e.  NN )
51 zmodfzo 10239 . . . . . . . . . . . . 13  |-  ( ( ( A  x.  ( F `  x )
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( A  x.  ( F `  x ) )  mod  N )  e.  ( 0..^ N ) )
5249, 50, 51syl2anc 409 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( A  x.  ( F `  x ) )  mod 
N )  e.  ( 0..^ N ) )
5343, 46, 47, 52fvmptd3 5560 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( (
y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) `  x )  =  ( ( A  x.  ( F `  x ) )  mod 
N ) )
5453fveq2d 5471 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( `' F `  ( (
y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) `  x )
)  =  ( `' F `  ( ( A  x.  ( F `
 x ) )  mod  N ) ) )
5542, 54eqtrd 2190 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( `' F  o.  (
y  e.  ( 1 ... ( phi `  N ) )  |->  ( ( A  x.  ( F `  y )
)  mod  N )
) ) `  x
)  =  ( `' F `  ( ( A  x.  ( F `
 x ) )  mod  N ) ) )
5621ffvelrnda 5601 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( 1 ... ( phi `  N ) ) )  ->  ( F `  z )  e.  S
)
5719, 56sseldi 3126 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( 1 ... ( phi `  N ) ) )  ->  ( F `  z )  e.  ZZ )
5857zcnd 9281 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( 1 ... ( phi `  N ) ) )  ->  ( F `  z )  e.  CC )
5926, 13, 28, 55, 58fprodf1o 11478 . . . . . . . 8  |-  ( ph  ->  prod_ z  e.  ( 1 ... ( phi `  N ) ) ( F `  z )  =  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  ( `' F `  ( ( A  x.  ( F `
 x ) )  mod  N ) ) ) )
603adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  F :
( 1 ... ( phi `  N ) ) -1-1-onto-> S )
61 modgcd 11866 . . . . . . . . . . . . 13  |-  ( ( ( A  x.  ( F `  x )
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( A  x.  ( F `  x ) )  mod 
N )  gcd  N
)  =  ( ( A  x.  ( F `
 x ) )  gcd  N ) )
6249, 50, 61syl2anc 409 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( (
( A  x.  ( F `  x )
)  mod  N )  gcd  N )  =  ( ( A  x.  ( F `  x )
)  gcd  N )
)
6350nnzd 9279 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  N  e.  ZZ )
6463, 49gcdcomd 11849 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( N  gcd  ( A  x.  ( F `  x )
) )  =  ( ( A  x.  ( F `  x )
)  gcd  N )
)
655nnzd 9279 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  ZZ )
666, 65gcdcomd 11849 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  gcd  N
)  =  ( N  gcd  A ) )
671simp3d 996 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  gcd  N
)  =  1 )
6866, 67eqtr3d 2192 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( N  gcd  A
)  =  1 )
6968adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( N  gcd  A )  =  1 )
7023, 63gcdcomd 11849 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( F `  x )  gcd  N )  =  ( N  gcd  ( F `
 x ) ) )
71 oveq1 5828 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( F `  x )  ->  (
y  gcd  N )  =  ( ( F `
 x )  gcd 
N ) )
7271eqeq1d 2166 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( F `  x )  ->  (
( y  gcd  N
)  =  1  <->  (
( F `  x
)  gcd  N )  =  1 ) )
7372, 2elrab2 2871 . . . . . . . . . . . . . . . 16  |-  ( ( F `  x )  e.  S  <->  ( ( F `  x )  e.  ( 0..^ N )  /\  ( ( F `
 x )  gcd 
N )  =  1 ) )
7422, 73sylib 121 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( F `  x )  e.  ( 0..^ N )  /\  ( ( F `
 x )  gcd 
N )  =  1 ) )
7574simprd 113 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( F `  x )  gcd  N )  =  1 )
7670, 75eqtr3d 2192 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( N  gcd  ( F `  x
) )  =  1 )
77 rpmul 11966 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  A  e.  ZZ  /\  ( F `  x )  e.  ZZ )  ->  (
( ( N  gcd  A )  =  1  /\  ( N  gcd  ( F `  x )
)  =  1 )  ->  ( N  gcd  ( A  x.  ( F `  x )
) )  =  1 ) )
7863, 48, 23, 77syl3anc 1220 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( (
( N  gcd  A
)  =  1  /\  ( N  gcd  ( F `  x )
)  =  1 )  ->  ( N  gcd  ( A  x.  ( F `  x )
) )  =  1 ) )
7969, 76, 78mp2and 430 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( N  gcd  ( A  x.  ( F `  x )
) )  =  1 )
8062, 64, 793eqtr2d 2196 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( (
( A  x.  ( F `  x )
)  mod  N )  gcd  N )  =  1 )
81 oveq1 5828 . . . . . . . . . . . . 13  |-  ( y  =  ( ( A  x.  ( F `  x ) )  mod 
N )  ->  (
y  gcd  N )  =  ( ( ( A  x.  ( F `
 x ) )  mod  N )  gcd 
N ) )
8281eqeq1d 2166 . . . . . . . . . . . 12  |-  ( y  =  ( ( A  x.  ( F `  x ) )  mod 
N )  ->  (
( y  gcd  N
)  =  1  <->  (
( ( A  x.  ( F `  x ) )  mod  N )  gcd  N )  =  1 ) )
8382, 2elrab2 2871 . . . . . . . . . . 11  |-  ( ( ( A  x.  ( F `  x )
)  mod  N )  e.  S  <->  ( ( ( A  x.  ( F `
 x ) )  mod  N )  e.  ( 0..^ N )  /\  ( ( ( A  x.  ( F `
 x ) )  mod  N )  gcd 
N )  =  1 ) )
8452, 80, 83sylanbrc 414 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( ( A  x.  ( F `  x ) )  mod 
N )  e.  S
)
85 f1ocnvfv2 5725 . . . . . . . . . 10  |-  ( ( F : ( 1 ... ( phi `  N ) ) -1-1-onto-> S  /\  ( ( A  x.  ( F `  x ) )  mod  N )  e.  S )  -> 
( F `  ( `' F `  ( ( A  x.  ( F `
 x ) )  mod  N ) ) )  =  ( ( A  x.  ( F `
 x ) )  mod  N ) )
8660, 84, 85syl2anc 409 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... ( phi `  N ) ) )  ->  ( F `  ( `' F `  ( ( A  x.  ( F `  x ) )  mod  N ) ) )  =  ( ( A  x.  ( F `  x )
)  mod  N )
)
8786prodeq2dv 11456 . . . . . . . 8  |-  ( ph  ->  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  ( `' F `  ( ( A  x.  ( F `
 x ) )  mod  N ) ) )  =  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x ) )  mod  N ) )
8859, 87eqtr2d 2191 . . . . . . 7  |-  ( ph  ->  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x )
)  mod  N )  =  prod_ z  e.  ( 1 ... ( phi `  N ) ) ( F `  z ) )
89 fveq2 5467 . . . . . . . . 9  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
9089cbvprodv 11449 . . . . . . . 8  |-  prod_ z  e.  ( 1 ... ( phi `  N ) ) ( F `  z
)  =  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x
)
9190, 24eqeltrid 2244 . . . . . . 7  |-  ( ph  ->  prod_ z  e.  ( 1 ... ( phi `  N ) ) ( F `  z )  e.  ZZ )
9288, 91eqeltrd 2234 . . . . . 6  |-  ( ph  ->  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x )
)  mod  N )  e.  ZZ )
93 moddvds 11688 . . . . . 6  |-  ( ( N  e.  NN  /\  ( ( A ^
( phi `  N
) )  x.  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  e.  ZZ  /\  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( ( A  x.  ( F `
 x ) )  mod  N )  e.  ZZ )  ->  (
( ( ( A ^ ( phi `  N ) )  x. 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) )  mod  N )  =  ( prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x ) )  mod  N )  mod  N )  <->  N  ||  (
( ( A ^
( phi `  N
) )  x.  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  -  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x )
)  mod  N )
) ) )
945, 25, 92, 93syl3anc 1220 . . . . 5  |-  ( ph  ->  ( ( ( ( A ^ ( phi `  N ) )  x. 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) )  mod  N )  =  ( prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x ) )  mod  N )  mod  N )  <->  N  ||  (
( ( A ^
( phi `  N
) )  x.  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  -  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x )
)  mod  N )
) ) )
954, 94mpbid 146 . . . 4  |-  ( ph  ->  N  ||  ( ( ( A ^ ( phi `  N ) )  x.  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x ) )  -  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x ) )  mod  N ) ) )
9624zcnd 9281 . . . . . . . 8  |-  ( ph  ->  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x )  e.  CC )
9796mulid2d 7890 . . . . . . 7  |-  ( ph  ->  ( 1  x.  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  =  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x ) )
9890, 88, 973eqtr4a 2216 . . . . . 6  |-  ( ph  ->  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x )
)  mod  N )  =  ( 1  x. 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) ) )
9998oveq2d 5837 . . . . 5  |-  ( ph  ->  ( ( ( A ^ ( phi `  N ) )  x. 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) )  -  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x ) )  mod  N ) )  =  ( ( ( A ^ ( phi `  N ) )  x.  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x ) )  -  ( 1  x.  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x ) ) ) )
10010zcnd 9281 . . . . . 6  |-  ( ph  ->  ( A ^ ( phi `  N ) )  e.  CC )
101 ax-1cn 7819 . . . . . . 7  |-  1  e.  CC
102 subdir 8255 . . . . . . 7  |-  ( ( ( A ^ ( phi `  N ) )  e.  CC  /\  1  e.  CC  /\  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x
)  e.  CC )  ->  ( ( ( A ^ ( phi `  N ) )  - 
1 )  x.  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  =  ( ( ( A ^ ( phi `  N ) )  x. 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) )  -  ( 1  x.  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x ) ) ) )
103101, 102mp3an2 1307 . . . . . 6  |-  ( ( ( A ^ ( phi `  N ) )  e.  CC  /\  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x )  e.  CC )  ->  (
( ( A ^
( phi `  N
) )  -  1 )  x.  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x
) )  =  ( ( ( A ^
( phi `  N
) )  x.  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  -  ( 1  x. 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) ) ) )
104100, 96, 103syl2anc 409 . . . . 5  |-  ( ph  ->  ( ( ( A ^ ( phi `  N ) )  - 
1 )  x.  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  =  ( ( ( A ^ ( phi `  N ) )  x. 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) )  -  ( 1  x.  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x ) ) ) )
10510, 11zsubcld 9285 . . . . . . 7  |-  ( ph  ->  ( ( A ^
( phi `  N
) )  -  1 )  e.  ZZ )
106105zcnd 9281 . . . . . 6  |-  ( ph  ->  ( ( A ^
( phi `  N
) )  -  1 )  e.  CC )
107106, 96mulcomd 7893 . . . . 5  |-  ( ph  ->  ( ( ( A ^ ( phi `  N ) )  - 
1 )  x.  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  =  ( prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x
)  x.  ( ( A ^ ( phi `  N ) )  - 
1 ) ) )
10899, 104, 1073eqtr2d 2196 . . . 4  |-  ( ph  ->  ( ( ( A ^ ( phi `  N ) )  x. 
prod_ x  e.  (
1 ... ( phi `  N ) ) ( F `  x ) )  -  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( ( A  x.  ( F `  x ) )  mod  N ) )  =  ( prod_
x  e.  ( 1 ... ( phi `  N ) ) ( F `  x )  x.  ( ( A ^ ( phi `  N ) )  - 
1 ) ) )
10995, 108breqtrd 3990 . . 3  |-  ( ph  ->  N  ||  ( prod_
x  e.  ( 1 ... ( phi `  N ) ) ( F `  x )  x.  ( ( A ^ ( phi `  N ) )  - 
1 ) ) )
1101, 2, 3eulerthlemrprm 12092 . . 3  |-  ( ph  ->  ( N  gcd  prod_ x  e.  ( 1 ... ( phi `  N
) ) ( F `
 x ) )  =  1 )
111 coprmdvds 11960 . . . 4  |-  ( ( N  e.  ZZ  /\  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x )  e.  ZZ  /\  (
( A ^ ( phi `  N ) )  -  1 )  e.  ZZ )  ->  (
( N  ||  ( prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x )  x.  ( ( A ^ ( phi `  N ) )  - 
1 ) )  /\  ( N  gcd  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x
) )  =  1 )  ->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
11265, 24, 105, 111syl3anc 1220 . . 3  |-  ( ph  ->  ( ( N  ||  ( prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x )  x.  ( ( A ^ ( phi `  N ) )  - 
1 ) )  /\  ( N  gcd  prod_ x  e.  ( 1 ... ( phi `  N ) ) ( F `  x
) )  =  1 )  ->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
113109, 110, 112mp2and 430 . 2  |-  ( ph  ->  N  ||  ( ( A ^ ( phi `  N ) )  - 
1 ) )
114 1z 9187 . . . 4  |-  1  e.  ZZ
115 moddvds 11688 . . . 4  |-  ( ( N  e.  NN  /\  ( A ^ ( phi `  N ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
116114, 115mp3an3 1308 . . 3  |-  ( ( N  e.  NN  /\  ( A ^ ( phi `  N ) )  e.  ZZ )  ->  (
( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ ( phi `  N ) )  -  1 ) ) )
1175, 10, 116syl2anc 409 . 2  |-  ( ph  ->  ( ( ( A ^ ( phi `  N ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( phi `  N ) )  - 
1 ) ) )
118113, 117mpbird 166 1  |-  ( ph  ->  ( ( A ^
( phi `  N
) )  mod  N
)  =  ( 1  mod  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128   {crab 2439   class class class wbr 3965    |-> cmpt 4025   `'ccnv 4584    o. ccom 4589   -->wf 5165   -1-1-onto->wf1o 5168   ` cfv 5169  (class class class)co 5821   CCcc 7724   0cc0 7726   1c1 7727    x. cmul 7731    - cmin 8040   NNcn 8827   NN0cn0 9084   ZZcz 9161   ...cfz 9905  ..^cfzo 10034    mod cmo 10214   ^cexp 10411   prod_cprod 11440    || cdvds 11676    gcd cgcd 11821   phicphi 12073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-isom 5178  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-frec 6335  df-1o 6360  df-oadd 6364  df-er 6477  df-en 6683  df-dom 6684  df-fin 6685  df-sup 6924  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-q 9522  df-rp 9554  df-fz 9906  df-fzo 10035  df-fl 10162  df-mod 10215  df-seqfrec 10338  df-exp 10412  df-ihash 10643  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892  df-clim 11169  df-proddc 11441  df-dvds 11677  df-gcd 11822  df-phi 12074
This theorem is referenced by:  eulerth  12096
  Copyright terms: Public domain W3C validator