ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvprodv GIF version

Theorem cbvprodv 11870
Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
cbvprod.1 (𝑗 = 𝑘𝐵 = 𝐶)
Assertion
Ref Expression
cbvprodv 𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑘   𝐶,𝑗
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑘)

Proof of Theorem cbvprodv
StepHypRef Expression
1 cbvprod.1 . 2 (𝑗 = 𝑘𝐵 = 𝐶)
2 nfcv 2348 . 2 𝑘𝐴
3 nfcv 2348 . 2 𝑗𝐴
4 nfcv 2348 . 2 𝑘𝐵
5 nfcv 2348 . 2 𝑗𝐶
61, 2, 3, 4, 5cbvprod 11869 1 𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  cprod 11861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-recs 6391  df-frec 6477  df-seqfrec 10593  df-proddc 11862
This theorem is referenced by:  eulerthlemth  12554
  Copyright terms: Public domain W3C validator