ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cldss2 Unicode version

Theorem cldss2 14285
Description: The set of closed sets is contained in the powerset of the base. (Contributed by Mario Carneiro, 6-Jan-2014.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
cldss2  |-  ( Clsd `  J )  C_  ~P X

Proof of Theorem cldss2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . 4  |-  X  = 
U. J
21cldss 14284 . . 3  |-  ( x  e.  ( Clsd `  J
)  ->  x  C_  X
)
3 velpw 3609 . . 3  |-  ( x  e.  ~P X  <->  x  C_  X
)
42, 3sylibr 134 . 2  |-  ( x  e.  ( Clsd `  J
)  ->  x  e.  ~P X )
54ssriv 3184 1  |-  ( Clsd `  J )  C_  ~P X
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164    C_ wss 3154   ~Pcpw 3602   U.cuni 3836   ` cfv 5255   Clsdccld 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-top 14177  df-cld 14274
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator