| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cldss2 | GIF version | ||
| Description: The set of closed sets is contained in the powerset of the base. (Contributed by Mario Carneiro, 6-Jan-2014.) |
| Ref | Expression |
|---|---|
| iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| cldss2 | ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | cldss 14692 | . . 3 ⊢ (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ⊆ 𝑋) |
| 3 | velpw 3633 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝑋 ↔ 𝑥 ⊆ 𝑋) | |
| 4 | 2, 3 | sylibr 134 | . 2 ⊢ (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ∈ 𝒫 𝑋) |
| 5 | 4 | ssriv 3205 | 1 ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2178 ⊆ wss 3174 𝒫 cpw 3626 ∪ cuni 3864 ‘cfv 5290 Clsdccld 14679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-top 14585 df-cld 14682 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |