ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climrel Unicode version

Theorem climrel 11791
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climrel  |-  Rel  ~~>

Proof of Theorem climrel
Dummy variables  j  k  x  y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-clim 11790 . 2  |-  ~~>  =  { <. f ,  y >.  |  ( y  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x ) ) }
21relopabi 4847 1  |-  Rel  ~~>
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2200   A.wral 2508   E.wrex 2509   class class class wbr 4083   Rel wrel 4724   ` cfv 5318  (class class class)co 6001   CCcc 7997    < clt 8181    - cmin 8317   ZZcz 9446   ZZ>=cuz 9722   RR+crp 9849   abscabs 11508    ~~> cli 11789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-xp 4725  df-rel 4726  df-clim 11790
This theorem is referenced by:  clim  11792  climcl  11793  climi  11798  fclim  11805  climrecl  11835  iserex  11850  climrecvg1n  11859  climcvg1nlem  11860  fsum3cvg3  11907  trirecip  12012  ntrivcvgap0  12060
  Copyright terms: Public domain W3C validator