ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climrel Unicode version

Theorem climrel 11562
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climrel  |-  Rel  ~~>

Proof of Theorem climrel
Dummy variables  j  k  x  y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-clim 11561 . 2  |-  ~~>  =  { <. f ,  y >.  |  ( y  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x ) ) }
21relopabi 4802 1  |-  Rel  ~~>
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2175   A.wral 2483   E.wrex 2484   class class class wbr 4043   Rel wrel 4679   ` cfv 5270  (class class class)co 5943   CCcc 7922    < clt 8106    - cmin 8242   ZZcz 9371   ZZ>=cuz 9647   RR+crp 9774   abscabs 11279    ~~> cli 11560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-opab 4105  df-xp 4680  df-rel 4681  df-clim 11561
This theorem is referenced by:  clim  11563  climcl  11564  climi  11569  fclim  11576  climrecl  11606  iserex  11621  climrecvg1n  11630  climcvg1nlem  11631  fsum3cvg3  11678  trirecip  11783  ntrivcvgap0  11831
  Copyright terms: Public domain W3C validator