Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > climrel | Unicode version |
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climrel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clim 11220 | . 2 | |
2 | 1 | relopabi 4730 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wcel 2136 wral 2444 wrex 2445 class class class wbr 3982 wrel 4609 cfv 5188 (class class class)co 5842 cc 7751 clt 7933 cmin 8069 cz 9191 cuz 9466 crp 9589 cabs 10939 cli 11219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-xp 4610 df-rel 4611 df-clim 11220 |
This theorem is referenced by: clim 11222 climcl 11223 climi 11228 fclim 11235 climrecl 11265 iserex 11280 climrecvg1n 11289 climcvg1nlem 11290 fsum3cvg3 11337 trirecip 11442 ntrivcvgap0 11490 |
Copyright terms: Public domain | W3C validator |