Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > climrel | Unicode version |
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climrel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clim 11242 | . 2 | |
2 | 1 | relopabi 4737 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wcel 2141 wral 2448 wrex 2449 class class class wbr 3989 wrel 4616 cfv 5198 (class class class)co 5853 cc 7772 clt 7954 cmin 8090 cz 9212 cuz 9487 crp 9610 cabs 10961 cli 11241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-xp 4617 df-rel 4618 df-clim 11242 |
This theorem is referenced by: clim 11244 climcl 11245 climi 11250 fclim 11257 climrecl 11287 iserex 11302 climrecvg1n 11311 climcvg1nlem 11312 fsum3cvg3 11359 trirecip 11464 ntrivcvgap0 11512 |
Copyright terms: Public domain | W3C validator |