ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcl Unicode version

Theorem climcl 11593
Description: Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
climcl  |-  ( F  ~~>  A  ->  A  e.  CC )

Proof of Theorem climcl
Dummy variables  j  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 11591 . . . . 5  |-  Rel  ~~>
21brrelex1i 4718 . . . 4  |-  ( F  ~~>  A  ->  F  e.  _V )
3 eqidd 2206 . . . 4  |-  ( ( F  ~~>  A  /\  k  e.  ZZ )  ->  ( F `  k )  =  ( F `  k ) )
42, 3clim 11592 . . 3  |-  ( F  ~~>  A  ->  ( F  ~~>  A 
<->  ( A  e.  CC  /\ 
A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x ) ) ) )
54ibi 176 . 2  |-  ( F  ~~>  A  ->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) )
65simpld 112 1  |-  ( F  ~~>  A  ->  A  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   A.wral 2484   E.wrex 2485   _Vcvv 2772   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923    < clt 8107    - cmin 8243   ZZcz 9372   ZZ>=cuz 9648   RR+crp 9775   abscabs 11308    ~~> cli 11589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-cnex 8016  ax-resscn 8017
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-neg 8246  df-z 9373  df-uz 9649  df-clim 11590
This theorem is referenced by:  climuni  11604  fclim  11605  climeu  11607  climreu  11608  2clim  11612  climcn1lem  11630  climrecl  11635  climadd  11637  climmul  11638  climsub  11639  climaddc2  11641  climcau  11658  geoisum1c  11831  clim2divap  11851  ntrivcvgap  11859
  Copyright terms: Public domain W3C validator