ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcl Unicode version

Theorem climcl 11793
Description: Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
climcl  |-  ( F  ~~>  A  ->  A  e.  CC )

Proof of Theorem climcl
Dummy variables  j  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 11791 . . . . 5  |-  Rel  ~~>
21brrelex1i 4762 . . . 4  |-  ( F  ~~>  A  ->  F  e.  _V )
3 eqidd 2230 . . . 4  |-  ( ( F  ~~>  A  /\  k  e.  ZZ )  ->  ( F `  k )  =  ( F `  k ) )
42, 3clim 11792 . . 3  |-  ( F  ~~>  A  ->  ( F  ~~>  A 
<->  ( A  e.  CC  /\ 
A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x ) ) ) )
54ibi 176 . 2  |-  ( F  ~~>  A  ->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) )
65simpld 112 1  |-  ( F  ~~>  A  ->  A  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   A.wral 2508   E.wrex 2509   _Vcvv 2799   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997    < clt 8181    - cmin 8317   ZZcz 9446   ZZ>=cuz 9722   RR+crp 9849   abscabs 11508    ~~> cli 11789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-cnex 8090  ax-resscn 8091
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-neg 8320  df-z 9447  df-uz 9723  df-clim 11790
This theorem is referenced by:  climuni  11804  fclim  11805  climeu  11807  climreu  11808  2clim  11812  climcn1lem  11830  climrecl  11835  climadd  11837  climmul  11838  climsub  11839  climaddc2  11841  climcau  11858  geoisum1c  12031  clim2divap  12051  ntrivcvgap  12059
  Copyright terms: Public domain W3C validator