ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcl Unicode version

Theorem climcl 11425
Description: Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
climcl  |-  ( F  ~~>  A  ->  A  e.  CC )

Proof of Theorem climcl
Dummy variables  j  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 11423 . . . . 5  |-  Rel  ~~>
21brrelex1i 4702 . . . 4  |-  ( F  ~~>  A  ->  F  e.  _V )
3 eqidd 2194 . . . 4  |-  ( ( F  ~~>  A  /\  k  e.  ZZ )  ->  ( F `  k )  =  ( F `  k ) )
42, 3clim 11424 . . 3  |-  ( F  ~~>  A  ->  ( F  ~~>  A 
<->  ( A  e.  CC  /\ 
A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x ) ) ) )
54ibi 176 . 2  |-  ( F  ~~>  A  ->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) )
65simpld 112 1  |-  ( F  ~~>  A  ->  A  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   A.wral 2472   E.wrex 2473   _Vcvv 2760   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870    < clt 8054    - cmin 8190   ZZcz 9317   ZZ>=cuz 9592   RR+crp 9719   abscabs 11141    ~~> cli 11421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-cnex 7963  ax-resscn 7964
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-neg 8193  df-z 9318  df-uz 9593  df-clim 11422
This theorem is referenced by:  climuni  11436  fclim  11437  climeu  11439  climreu  11440  2clim  11444  climcn1lem  11462  climrecl  11467  climadd  11469  climmul  11470  climsub  11471  climaddc2  11473  climcau  11490  geoisum1c  11663  clim2divap  11683  ntrivcvgap  11691
  Copyright terms: Public domain W3C validator