ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climi Unicode version

Theorem climi 11683
Description: Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climi.1  |-  Z  =  ( ZZ>= `  M )
climi.2  |-  ( ph  ->  M  e.  ZZ )
climi.3  |-  ( ph  ->  C  e.  RR+ )
climi.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
climi.5  |-  ( ph  ->  F  ~~>  A )
Assertion
Ref Expression
climi  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  C ) )
Distinct variable groups:    j, k, A    C, j, k    j, F, k    ph, j, k    j, Z, k    j, M
Allowed substitution hints:    B( j, k)    M( k)

Proof of Theorem climi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq2 4058 . . . 4  |-  ( x  =  C  ->  (
( abs `  ( B  -  A )
)  <  x  <->  ( abs `  ( B  -  A
) )  <  C
) )
21anbi2d 464 . . 3  |-  ( x  =  C  ->  (
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  C ) ) )
32rexralbidv 2533 . 2  |-  ( x  =  C  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  C )
) )
4 climi.5 . . . 4  |-  ( ph  ->  F  ~~>  A )
5 climi.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
6 climi.2 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
7 climrel 11676 . . . . . . 7  |-  Rel  ~~>
87brrelex1i 4731 . . . . . 6  |-  ( F  ~~>  A  ->  F  e.  _V )
94, 8syl 14 . . . . 5  |-  ( ph  ->  F  e.  _V )
10 climi.4 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
115, 6, 9, 10clim2 11679 . . . 4  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
124, 11mpbid 147 . . 3  |-  ( ph  ->  ( A  e.  CC  /\ 
A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
x ) ) )
1312simprd 114 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
x ) )
14 climi.3 . 2  |-  ( ph  ->  C  e.  RR+ )
153, 13, 14rspcdva 2886 1  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   A.wral 2485   E.wrex 2486   _Vcvv 2773   class class class wbr 4054   ` cfv 5285  (class class class)co 5962   CCcc 7953    < clt 8137    - cmin 8273   ZZcz 9402   ZZ>=cuz 9678   RR+crp 9805   abscabs 11393    ~~> cli 11674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-n0 9326  df-z 9403  df-uz 9679  df-clim 11675
This theorem is referenced by:  climi2  11684  climi0  11685  climuni  11689  2clim  11697  climcau  11743  climcaucn  11747
  Copyright terms: Public domain W3C validator