ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climi Unicode version

Theorem climi 11517
Description: Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climi.1  |-  Z  =  ( ZZ>= `  M )
climi.2  |-  ( ph  ->  M  e.  ZZ )
climi.3  |-  ( ph  ->  C  e.  RR+ )
climi.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
climi.5  |-  ( ph  ->  F  ~~>  A )
Assertion
Ref Expression
climi  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  C ) )
Distinct variable groups:    j, k, A    C, j, k    j, F, k    ph, j, k    j, Z, k    j, M
Allowed substitution hints:    B( j, k)    M( k)

Proof of Theorem climi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq2 4047 . . . 4  |-  ( x  =  C  ->  (
( abs `  ( B  -  A )
)  <  x  <->  ( abs `  ( B  -  A
) )  <  C
) )
21anbi2d 464 . . 3  |-  ( x  =  C  ->  (
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  C ) ) )
32rexralbidv 2531 . 2  |-  ( x  =  C  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  C )
) )
4 climi.5 . . . 4  |-  ( ph  ->  F  ~~>  A )
5 climi.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
6 climi.2 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
7 climrel 11510 . . . . . . 7  |-  Rel  ~~>
87brrelex1i 4716 . . . . . 6  |-  ( F  ~~>  A  ->  F  e.  _V )
94, 8syl 14 . . . . 5  |-  ( ph  ->  F  e.  _V )
10 climi.4 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
115, 6, 9, 10clim2 11513 . . . 4  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
124, 11mpbid 147 . . 3  |-  ( ph  ->  ( A  e.  CC  /\ 
A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
x ) ) )
1312simprd 114 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
x ) )
14 climi.3 . 2  |-  ( ph  ->  C  e.  RR+ )
153, 13, 14rspcdva 2881 1  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484   _Vcvv 2771   class class class wbr 4043   ` cfv 5268  (class class class)co 5934   CCcc 7905    < clt 8089    - cmin 8225   ZZcz 9354   ZZ>=cuz 9630   RR+crp 9757   abscabs 11227    ~~> cli 11508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631  df-clim 11509
This theorem is referenced by:  climi2  11518  climi0  11519  climuni  11523  2clim  11531  climcau  11577  climcaucn  11581
  Copyright terms: Public domain W3C validator