ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climi Unicode version

Theorem climi 11088
Description: Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climi.1  |-  Z  =  ( ZZ>= `  M )
climi.2  |-  ( ph  ->  M  e.  ZZ )
climi.3  |-  ( ph  ->  C  e.  RR+ )
climi.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
climi.5  |-  ( ph  ->  F  ~~>  A )
Assertion
Ref Expression
climi  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  C ) )
Distinct variable groups:    j, k, A    C, j, k    j, F, k    ph, j, k    j, Z, k    j, M
Allowed substitution hints:    B( j, k)    M( k)

Proof of Theorem climi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq2 3941 . . . 4  |-  ( x  =  C  ->  (
( abs `  ( B  -  A )
)  <  x  <->  ( abs `  ( B  -  A
) )  <  C
) )
21anbi2d 460 . . 3  |-  ( x  =  C  ->  (
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  C ) ) )
32rexralbidv 2464 . 2  |-  ( x  =  C  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  C )
) )
4 climi.5 . . . 4  |-  ( ph  ->  F  ~~>  A )
5 climi.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
6 climi.2 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
7 climrel 11081 . . . . . . 7  |-  Rel  ~~>
87brrelex1i 4590 . . . . . 6  |-  ( F  ~~>  A  ->  F  e.  _V )
94, 8syl 14 . . . . 5  |-  ( ph  ->  F  e.  _V )
10 climi.4 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
115, 6, 9, 10clim2 11084 . . . 4  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
124, 11mpbid 146 . . 3  |-  ( ph  ->  ( A  e.  CC  /\ 
A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
x ) ) )
1312simprd 113 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
x ) )
14 climi.3 . 2  |-  ( ph  ->  C  e.  RR+ )
153, 13, 14rspcdva 2798 1  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   _Vcvv 2689   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642    < clt 7824    - cmin 7957   ZZcz 9078   ZZ>=cuz 9350   RR+crp 9470   abscabs 10801    ~~> cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-clim 11080
This theorem is referenced by:  climi2  11089  climi0  11090  climuni  11094  2clim  11102  climcau  11148  climcaucn  11152
  Copyright terms: Public domain W3C validator