ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inflbti Unicode version

Theorem inflbti 6985
Description: An infimum is a lower bound. See also infclti 6984 and infglbti 6986. (Contributed by Jim Kingdon, 18-Dec-2021.)
Hypotheses
Ref Expression
infclti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
infclti.ex  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
Assertion
Ref Expression
inflbti  |-  ( ph  ->  ( C  e.  B  ->  -.  C Rinf ( B ,  A ,  R ) ) )
Distinct variable groups:    u, A, v, x, y, z    u, B, v, x, y, z   
u, R, v, x, y, z    ph, u, v, x, y, z
Allowed substitution hints:    C( x, y, z, v, u)

Proof of Theorem inflbti
StepHypRef Expression
1 infclti.ti . . . . . 6  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
21cnvti 6980 . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
3 infclti.ex . . . . . 6  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
43cnvinfex 6979 . . . . 5  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) ) )
52, 4supubti 6960 . . . 4  |-  ( ph  ->  ( C  e.  B  ->  -.  sup ( B ,  A ,  `' R ) `' R C ) )
65imp 123 . . 3  |-  ( (
ph  /\  C  e.  B )  ->  -.  sup ( B ,  A ,  `' R ) `' R C )
7 df-inf 6946 . . . . . 6  |- inf ( B ,  A ,  R
)  =  sup ( B ,  A ,  `' R )
87a1i 9 . . . . 5  |-  ( (
ph  /\  C  e.  B )  -> inf ( B ,  A ,  R
)  =  sup ( B ,  A ,  `' R ) )
98breq2d 3993 . . . 4  |-  ( (
ph  /\  C  e.  B )  ->  ( C Rinf ( B ,  A ,  R )  <->  C R sup ( B ,  A ,  `' R ) ) )
102, 4supclti 6959 . . . . 5  |-  ( ph  ->  sup ( B ,  A ,  `' R
)  e.  A )
11 brcnvg 4784 . . . . . 6  |-  ( ( sup ( B ,  A ,  `' R
)  e.  A  /\  C  e.  B )  ->  ( sup ( B ,  A ,  `' R ) `' R C 
<->  C R sup ( B ,  A ,  `' R ) ) )
1211bicomd 140 . . . . 5  |-  ( ( sup ( B ,  A ,  `' R
)  e.  A  /\  C  e.  B )  ->  ( C R sup ( B ,  A ,  `' R )  <->  sup ( B ,  A ,  `' R ) `' R C ) )
1310, 12sylan 281 . . . 4  |-  ( (
ph  /\  C  e.  B )  ->  ( C R sup ( B ,  A ,  `' R )  <->  sup ( B ,  A ,  `' R ) `' R C ) )
149, 13bitrd 187 . . 3  |-  ( (
ph  /\  C  e.  B )  ->  ( C Rinf ( B ,  A ,  R )  <->  sup ( B ,  A ,  `' R ) `' R C ) )
156, 14mtbird 663 . 2  |-  ( (
ph  /\  C  e.  B )  ->  -.  C Rinf ( B ,  A ,  R )
)
1615ex 114 1  |-  ( ph  ->  ( C  e.  B  ->  -.  C Rinf ( B ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2443   E.wrex 2444   class class class wbr 3981   `'ccnv 4602   supcsup 6943  infcinf 6944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-cnv 4611  df-iota 5152  df-riota 5797  df-sup 6945  df-inf 6946
This theorem is referenced by:  infregelbex  9532  zssinfcl  11877  infssuzledc  11879
  Copyright terms: Public domain W3C validator