ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inflbti Unicode version

Theorem inflbti 7126
Description: An infimum is a lower bound. See also infclti 7125 and infglbti 7127. (Contributed by Jim Kingdon, 18-Dec-2021.)
Hypotheses
Ref Expression
infclti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
infclti.ex  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
Assertion
Ref Expression
inflbti  |-  ( ph  ->  ( C  e.  B  ->  -.  C Rinf ( B ,  A ,  R ) ) )
Distinct variable groups:    u, A, v, x, y, z    u, B, v, x, y, z   
u, R, v, x, y, z    ph, u, v, x, y, z
Allowed substitution hints:    C( x, y, z, v, u)

Proof of Theorem inflbti
StepHypRef Expression
1 infclti.ti . . . . . 6  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
21cnvti 7121 . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
3 infclti.ex . . . . . 6  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
43cnvinfex 7120 . . . . 5  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) ) )
52, 4supubti 7101 . . . 4  |-  ( ph  ->  ( C  e.  B  ->  -.  sup ( B ,  A ,  `' R ) `' R C ) )
65imp 124 . . 3  |-  ( (
ph  /\  C  e.  B )  ->  -.  sup ( B ,  A ,  `' R ) `' R C )
7 df-inf 7087 . . . . . 6  |- inf ( B ,  A ,  R
)  =  sup ( B ,  A ,  `' R )
87a1i 9 . . . . 5  |-  ( (
ph  /\  C  e.  B )  -> inf ( B ,  A ,  R
)  =  sup ( B ,  A ,  `' R ) )
98breq2d 4056 . . . 4  |-  ( (
ph  /\  C  e.  B )  ->  ( C Rinf ( B ,  A ,  R )  <->  C R sup ( B ,  A ,  `' R ) ) )
102, 4supclti 7100 . . . . 5  |-  ( ph  ->  sup ( B ,  A ,  `' R
)  e.  A )
11 brcnvg 4859 . . . . . 6  |-  ( ( sup ( B ,  A ,  `' R
)  e.  A  /\  C  e.  B )  ->  ( sup ( B ,  A ,  `' R ) `' R C 
<->  C R sup ( B ,  A ,  `' R ) ) )
1211bicomd 141 . . . . 5  |-  ( ( sup ( B ,  A ,  `' R
)  e.  A  /\  C  e.  B )  ->  ( C R sup ( B ,  A ,  `' R )  <->  sup ( B ,  A ,  `' R ) `' R C ) )
1310, 12sylan 283 . . . 4  |-  ( (
ph  /\  C  e.  B )  ->  ( C R sup ( B ,  A ,  `' R )  <->  sup ( B ,  A ,  `' R ) `' R C ) )
149, 13bitrd 188 . . 3  |-  ( (
ph  /\  C  e.  B )  ->  ( C Rinf ( B ,  A ,  R )  <->  sup ( B ,  A ,  `' R ) `' R C ) )
156, 14mtbird 675 . 2  |-  ( (
ph  /\  C  e.  B )  ->  -.  C Rinf ( B ,  A ,  R )
)
1615ex 115 1  |-  ( ph  ->  ( C  e.  B  ->  -.  C Rinf ( B ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   class class class wbr 4044   `'ccnv 4674   supcsup 7084  infcinf 7085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-cnv 4683  df-iota 5232  df-riota 5899  df-sup 7086  df-inf 7087
This theorem is referenced by:  infregelbex  9719  zssinfcl  10375  infssuzledc  10377
  Copyright terms: Public domain W3C validator