ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inflbti Unicode version

Theorem inflbti 6919
Description: An infimum is a lower bound. See also infclti 6918 and infglbti 6920. (Contributed by Jim Kingdon, 18-Dec-2021.)
Hypotheses
Ref Expression
infclti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
infclti.ex  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
Assertion
Ref Expression
inflbti  |-  ( ph  ->  ( C  e.  B  ->  -.  C Rinf ( B ,  A ,  R ) ) )
Distinct variable groups:    u, A, v, x, y, z    u, B, v, x, y, z   
u, R, v, x, y, z    ph, u, v, x, y, z
Allowed substitution hints:    C( x, y, z, v, u)

Proof of Theorem inflbti
StepHypRef Expression
1 infclti.ti . . . . . 6  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
21cnvti 6914 . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
3 infclti.ex . . . . . 6  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
43cnvinfex 6913 . . . . 5  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) ) )
52, 4supubti 6894 . . . 4  |-  ( ph  ->  ( C  e.  B  ->  -.  sup ( B ,  A ,  `' R ) `' R C ) )
65imp 123 . . 3  |-  ( (
ph  /\  C  e.  B )  ->  -.  sup ( B ,  A ,  `' R ) `' R C )
7 df-inf 6880 . . . . . 6  |- inf ( B ,  A ,  R
)  =  sup ( B ,  A ,  `' R )
87a1i 9 . . . . 5  |-  ( (
ph  /\  C  e.  B )  -> inf ( B ,  A ,  R
)  =  sup ( B ,  A ,  `' R ) )
98breq2d 3949 . . . 4  |-  ( (
ph  /\  C  e.  B )  ->  ( C Rinf ( B ,  A ,  R )  <->  C R sup ( B ,  A ,  `' R ) ) )
102, 4supclti 6893 . . . . 5  |-  ( ph  ->  sup ( B ,  A ,  `' R
)  e.  A )
11 brcnvg 4728 . . . . . 6  |-  ( ( sup ( B ,  A ,  `' R
)  e.  A  /\  C  e.  B )  ->  ( sup ( B ,  A ,  `' R ) `' R C 
<->  C R sup ( B ,  A ,  `' R ) ) )
1211bicomd 140 . . . . 5  |-  ( ( sup ( B ,  A ,  `' R
)  e.  A  /\  C  e.  B )  ->  ( C R sup ( B ,  A ,  `' R )  <->  sup ( B ,  A ,  `' R ) `' R C ) )
1310, 12sylan 281 . . . 4  |-  ( (
ph  /\  C  e.  B )  ->  ( C R sup ( B ,  A ,  `' R )  <->  sup ( B ,  A ,  `' R ) `' R C ) )
149, 13bitrd 187 . . 3  |-  ( (
ph  /\  C  e.  B )  ->  ( C Rinf ( B ,  A ,  R )  <->  sup ( B ,  A ,  `' R ) `' R C ) )
156, 14mtbird 663 . 2  |-  ( (
ph  /\  C  e.  B )  ->  -.  C Rinf ( B ,  A ,  R )
)
1615ex 114 1  |-  ( ph  ->  ( C  e.  B  ->  -.  C Rinf ( B ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   class class class wbr 3937   `'ccnv 4546   supcsup 6877  infcinf 6878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-cnv 4555  df-iota 5096  df-riota 5738  df-sup 6879  df-inf 6880
This theorem is referenced by:  zssinfcl  11677  infssuzledc  11679
  Copyright terms: Public domain W3C validator