Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvinfex | GIF version |
Description: Two ways of expressing existence of an infimum (one in terms of converse). (Contributed by Jim Kingdon, 17-Dec-2021.) |
Ref | Expression |
---|---|
cnvinfex.ex | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
Ref | Expression |
---|---|
cnvinfex | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvinfex.ex | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
2 | vex 2733 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
3 | vex 2733 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | brcnv 4794 | . . . . . . 7 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
5 | 4 | a1i 9 | . . . . . 6 ⊢ (𝜑 → (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥)) |
6 | 5 | notbid 662 | . . . . 5 ⊢ (𝜑 → (¬ 𝑥◡𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥)) |
7 | 6 | ralbidv 2470 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
8 | 3, 2 | brcnv 4794 | . . . . . . 7 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
9 | 8 | a1i 9 | . . . . . 6 ⊢ (𝜑 → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
10 | vex 2733 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
11 | 3, 10 | brcnv 4794 | . . . . . . . 8 ⊢ (𝑦◡𝑅𝑧 ↔ 𝑧𝑅𝑦) |
12 | 11 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → (𝑦◡𝑅𝑧 ↔ 𝑧𝑅𝑦)) |
13 | 12 | rexbidv 2471 | . . . . . 6 ⊢ (𝜑 → (∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) |
14 | 9, 13 | imbi12d 233 | . . . . 5 ⊢ (𝜑 → ((𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧) ↔ (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
15 | 14 | ralbidv 2470 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧) ↔ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
16 | 7, 15 | anbi12d 470 | . . 3 ⊢ (𝜑 → ((∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)) ↔ (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) |
17 | 16 | rexbidv 2471 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)) ↔ ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) |
18 | 1, 17 | mpbird 166 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∀wral 2448 ∃wrex 2449 class class class wbr 3989 ◡ccnv 4610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-cnv 4619 |
This theorem is referenced by: infvalti 6999 infclti 7000 inflbti 7001 infglbti 7002 infisoti 7009 infrenegsupex 9553 infxrnegsupex 11226 |
Copyright terms: Public domain | W3C validator |