![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvinfex | GIF version |
Description: Two ways of expressing existence of an infimum (one in terms of converse). (Contributed by Jim Kingdon, 17-Dec-2021.) |
Ref | Expression |
---|---|
cnvinfex.ex | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
Ref | Expression |
---|---|
cnvinfex | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvinfex.ex | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
2 | vex 2740 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
3 | vex 2740 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | brcnv 4809 | . . . . . . 7 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
5 | 4 | a1i 9 | . . . . . 6 ⊢ (𝜑 → (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥)) |
6 | 5 | notbid 667 | . . . . 5 ⊢ (𝜑 → (¬ 𝑥◡𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥)) |
7 | 6 | ralbidv 2477 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
8 | 3, 2 | brcnv 4809 | . . . . . . 7 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
9 | 8 | a1i 9 | . . . . . 6 ⊢ (𝜑 → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
10 | vex 2740 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
11 | 3, 10 | brcnv 4809 | . . . . . . . 8 ⊢ (𝑦◡𝑅𝑧 ↔ 𝑧𝑅𝑦) |
12 | 11 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → (𝑦◡𝑅𝑧 ↔ 𝑧𝑅𝑦)) |
13 | 12 | rexbidv 2478 | . . . . . 6 ⊢ (𝜑 → (∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) |
14 | 9, 13 | imbi12d 234 | . . . . 5 ⊢ (𝜑 → ((𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧) ↔ (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
15 | 14 | ralbidv 2477 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧) ↔ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
16 | 7, 15 | anbi12d 473 | . . 3 ⊢ (𝜑 → ((∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)) ↔ (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) |
17 | 16 | rexbidv 2478 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)) ↔ ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) |
18 | 1, 17 | mpbird 167 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wral 2455 ∃wrex 2456 class class class wbr 4002 ◡ccnv 4624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4120 ax-pow 4173 ax-pr 4208 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-br 4003 df-opab 4064 df-cnv 4633 |
This theorem is referenced by: infvalti 7018 infclti 7019 inflbti 7020 infglbti 7021 infisoti 7028 infrenegsupex 9590 infxrnegsupex 11264 |
Copyright terms: Public domain | W3C validator |