| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infglbti | Unicode version | ||
| Description: An infimum is the greatest lower bound. See also infclti 7190 and inflbti 7191. (Contributed by Jim Kingdon, 18-Dec-2021.) |
| Ref | Expression |
|---|---|
| infclti.ti |
|
| infclti.ex |
|
| Ref | Expression |
|---|---|
| infglbti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 7152 |
. . . . 5
| |
| 2 | 1 | breq1i 4090 |
. . . 4
|
| 3 | simpr 110 |
. . . . 5
| |
| 4 | infclti.ti |
. . . . . . . 8
| |
| 5 | 4 | cnvti 7186 |
. . . . . . 7
|
| 6 | infclti.ex |
. . . . . . . 8
| |
| 7 | 6 | cnvinfex 7185 |
. . . . . . 7
|
| 8 | 5, 7 | supclti 7165 |
. . . . . 6
|
| 9 | 8 | adantr 276 |
. . . . 5
|
| 10 | brcnvg 4903 |
. . . . . 6
| |
| 11 | 10 | bicomd 141 |
. . . . 5
|
| 12 | 3, 9, 11 | syl2anc 411 |
. . . 4
|
| 13 | 2, 12 | bitrid 192 |
. . 3
|
| 14 | 5, 7 | suplubti 7167 |
. . . . 5
|
| 15 | 14 | expdimp 259 |
. . . 4
|
| 16 | vex 2802 |
. . . . . 6
| |
| 17 | brcnvg 4903 |
. . . . . 6
| |
| 18 | 3, 16, 17 | sylancl 413 |
. . . . 5
|
| 19 | 18 | rexbidv 2531 |
. . . 4
|
| 20 | 15, 19 | sylibd 149 |
. . 3
|
| 21 | 13, 20 | sylbid 150 |
. 2
|
| 22 | 21 | expimpd 363 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-cnv 4727 df-iota 5278 df-riota 5954 df-sup 7151 df-inf 7152 |
| This theorem is referenced by: infnlbti 7193 zssinfcl 10452 |
| Copyright terms: Public domain | W3C validator |