Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infglbti | Unicode version |
Description: An infimum is the greatest lower bound. See also infclti 6988 and inflbti 6989. (Contributed by Jim Kingdon, 18-Dec-2021.) |
Ref | Expression |
---|---|
infclti.ti | |
infclti.ex |
Ref | Expression |
---|---|
infglbti | inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 6950 | . . . . 5 inf | |
2 | 1 | breq1i 3989 | . . . 4 inf |
3 | simpr 109 | . . . . 5 | |
4 | infclti.ti | . . . . . . . 8 | |
5 | 4 | cnvti 6984 | . . . . . . 7 |
6 | infclti.ex | . . . . . . . 8 | |
7 | 6 | cnvinfex 6983 | . . . . . . 7 |
8 | 5, 7 | supclti 6963 | . . . . . 6 |
9 | 8 | adantr 274 | . . . . 5 |
10 | brcnvg 4785 | . . . . . 6 | |
11 | 10 | bicomd 140 | . . . . 5 |
12 | 3, 9, 11 | syl2anc 409 | . . . 4 |
13 | 2, 12 | syl5bb 191 | . . 3 inf |
14 | 5, 7 | suplubti 6965 | . . . . 5 |
15 | 14 | expdimp 257 | . . . 4 |
16 | vex 2729 | . . . . . 6 | |
17 | brcnvg 4785 | . . . . . 6 | |
18 | 3, 16, 17 | sylancl 410 | . . . . 5 |
19 | 18 | rexbidv 2467 | . . . 4 |
20 | 15, 19 | sylibd 148 | . . 3 |
21 | 13, 20 | sylbid 149 | . 2 inf |
22 | 21 | expimpd 361 | 1 inf |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2136 wral 2444 wrex 2445 cvv 2726 class class class wbr 3982 ccnv 4603 csup 6947 infcinf 6948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-cnv 4612 df-iota 5153 df-riota 5798 df-sup 6949 df-inf 6950 |
This theorem is referenced by: infnlbti 6991 zssinfcl 11881 |
Copyright terms: Public domain | W3C validator |