ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infglbti Unicode version

Theorem infglbti 7153
Description: An infimum is the greatest lower bound. See also infclti 7151 and inflbti 7152. (Contributed by Jim Kingdon, 18-Dec-2021.)
Hypotheses
Ref Expression
infclti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
infclti.ex  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
Assertion
Ref Expression
infglbti  |-  ( ph  ->  ( ( C  e.  A  /\ inf ( B ,  A ,  R ) R C )  ->  E. z  e.  B  z R C ) )
Distinct variable groups:    u, A, v, x, y, z    u, B, v, x, y, z   
u, R, v, x, y, z    ph, u, v, x, y, z    z, C
Allowed substitution hints:    C( x, y, v, u)

Proof of Theorem infglbti
StepHypRef Expression
1 df-inf 7113 . . . . 5  |- inf ( B ,  A ,  R
)  =  sup ( B ,  A ,  `' R )
21breq1i 4066 . . . 4  |-  (inf ( B ,  A ,  R ) R C  <->  sup ( B ,  A ,  `' R ) R C )
3 simpr 110 . . . . 5  |-  ( (
ph  /\  C  e.  A )  ->  C  e.  A )
4 infclti.ti . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
54cnvti 7147 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
6 infclti.ex . . . . . . . 8  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
76cnvinfex 7146 . . . . . . 7  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) ) )
85, 7supclti 7126 . . . . . 6  |-  ( ph  ->  sup ( B ,  A ,  `' R
)  e.  A )
98adantr 276 . . . . 5  |-  ( (
ph  /\  C  e.  A )  ->  sup ( B ,  A ,  `' R )  e.  A
)
10 brcnvg 4877 . . . . . 6  |-  ( ( C  e.  A  /\  sup ( B ,  A ,  `' R )  e.  A
)  ->  ( C `' R sup ( B ,  A ,  `' R )  <->  sup ( B ,  A ,  `' R ) R C ) )
1110bicomd 141 . . . . 5  |-  ( ( C  e.  A  /\  sup ( B ,  A ,  `' R )  e.  A
)  ->  ( sup ( B ,  A ,  `' R ) R C  <-> 
C `' R sup ( B ,  A ,  `' R ) ) )
123, 9, 11syl2anc 411 . . . 4  |-  ( (
ph  /\  C  e.  A )  ->  ( sup ( B ,  A ,  `' R ) R C  <-> 
C `' R sup ( B ,  A ,  `' R ) ) )
132, 12bitrid 192 . . 3  |-  ( (
ph  /\  C  e.  A )  ->  (inf ( B ,  A ,  R ) R C  <-> 
C `' R sup ( B ,  A ,  `' R ) ) )
145, 7suplubti 7128 . . . . 5  |-  ( ph  ->  ( ( C  e.  A  /\  C `' R sup ( B ,  A ,  `' R
) )  ->  E. z  e.  B  C `' R z ) )
1514expdimp 259 . . . 4  |-  ( (
ph  /\  C  e.  A )  ->  ( C `' R sup ( B ,  A ,  `' R )  ->  E. z  e.  B  C `' R z ) )
16 vex 2779 . . . . . 6  |-  z  e. 
_V
17 brcnvg 4877 . . . . . 6  |-  ( ( C  e.  A  /\  z  e.  _V )  ->  ( C `' R
z  <->  z R C ) )
183, 16, 17sylancl 413 . . . . 5  |-  ( (
ph  /\  C  e.  A )  ->  ( C `' R z  <->  z R C ) )
1918rexbidv 2509 . . . 4  |-  ( (
ph  /\  C  e.  A )  ->  ( E. z  e.  B  C `' R z  <->  E. z  e.  B  z R C ) )
2015, 19sylibd 149 . . 3  |-  ( (
ph  /\  C  e.  A )  ->  ( C `' R sup ( B ,  A ,  `' R )  ->  E. z  e.  B  z R C ) )
2113, 20sylbid 150 . 2  |-  ( (
ph  /\  C  e.  A )  ->  (inf ( B ,  A ,  R ) R C  ->  E. z  e.  B  z R C ) )
2221expimpd 363 1  |-  ( ph  ->  ( ( C  e.  A  /\ inf ( B ,  A ,  R ) R C )  ->  E. z  e.  B  z R C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2178   A.wral 2486   E.wrex 2487   _Vcvv 2776   class class class wbr 4059   `'ccnv 4692   supcsup 7110  infcinf 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-cnv 4701  df-iota 5251  df-riota 5922  df-sup 7112  df-inf 7113
This theorem is referenced by:  infnlbti  7154  zssinfcl  10412
  Copyright terms: Public domain W3C validator