| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infglbti | Unicode version | ||
| Description: An infimum is the greatest lower bound. See also infclti 7125 and inflbti 7126. (Contributed by Jim Kingdon, 18-Dec-2021.) |
| Ref | Expression |
|---|---|
| infclti.ti |
|
| infclti.ex |
|
| Ref | Expression |
|---|---|
| infglbti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 7087 |
. . . . 5
| |
| 2 | 1 | breq1i 4051 |
. . . 4
|
| 3 | simpr 110 |
. . . . 5
| |
| 4 | infclti.ti |
. . . . . . . 8
| |
| 5 | 4 | cnvti 7121 |
. . . . . . 7
|
| 6 | infclti.ex |
. . . . . . . 8
| |
| 7 | 6 | cnvinfex 7120 |
. . . . . . 7
|
| 8 | 5, 7 | supclti 7100 |
. . . . . 6
|
| 9 | 8 | adantr 276 |
. . . . 5
|
| 10 | brcnvg 4859 |
. . . . . 6
| |
| 11 | 10 | bicomd 141 |
. . . . 5
|
| 12 | 3, 9, 11 | syl2anc 411 |
. . . 4
|
| 13 | 2, 12 | bitrid 192 |
. . 3
|
| 14 | 5, 7 | suplubti 7102 |
. . . . 5
|
| 15 | 14 | expdimp 259 |
. . . 4
|
| 16 | vex 2775 |
. . . . . 6
| |
| 17 | brcnvg 4859 |
. . . . . 6
| |
| 18 | 3, 16, 17 | sylancl 413 |
. . . . 5
|
| 19 | 18 | rexbidv 2507 |
. . . 4
|
| 20 | 15, 19 | sylibd 149 |
. . 3
|
| 21 | 13, 20 | sylbid 150 |
. 2
|
| 22 | 21 | expimpd 363 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-cnv 4683 df-iota 5232 df-riota 5899 df-sup 7086 df-inf 7087 |
| This theorem is referenced by: infnlbti 7128 zssinfcl 10375 |
| Copyright terms: Public domain | W3C validator |