| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > infglbti | Unicode version | ||
| Description: An infimum is the greatest lower bound. See also infclti 7089 and inflbti 7090. (Contributed by Jim Kingdon, 18-Dec-2021.) | 
| Ref | Expression | 
|---|---|
| infclti.ti | 
 | 
| infclti.ex | 
 | 
| Ref | Expression | 
|---|---|
| infglbti | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-inf 7051 | 
. . . . 5
 | |
| 2 | 1 | breq1i 4040 | 
. . . 4
 | 
| 3 | simpr 110 | 
. . . . 5
 | |
| 4 | infclti.ti | 
. . . . . . . 8
 | |
| 5 | 4 | cnvti 7085 | 
. . . . . . 7
 | 
| 6 | infclti.ex | 
. . . . . . . 8
 | |
| 7 | 6 | cnvinfex 7084 | 
. . . . . . 7
 | 
| 8 | 5, 7 | supclti 7064 | 
. . . . . 6
 | 
| 9 | 8 | adantr 276 | 
. . . . 5
 | 
| 10 | brcnvg 4847 | 
. . . . . 6
 | |
| 11 | 10 | bicomd 141 | 
. . . . 5
 | 
| 12 | 3, 9, 11 | syl2anc 411 | 
. . . 4
 | 
| 13 | 2, 12 | bitrid 192 | 
. . 3
 | 
| 14 | 5, 7 | suplubti 7066 | 
. . . . 5
 | 
| 15 | 14 | expdimp 259 | 
. . . 4
 | 
| 16 | vex 2766 | 
. . . . . 6
 | |
| 17 | brcnvg 4847 | 
. . . . . 6
 | |
| 18 | 3, 16, 17 | sylancl 413 | 
. . . . 5
 | 
| 19 | 18 | rexbidv 2498 | 
. . . 4
 | 
| 20 | 15, 19 | sylibd 149 | 
. . 3
 | 
| 21 | 13, 20 | sylbid 150 | 
. 2
 | 
| 22 | 21 | expimpd 363 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-cnv 4671 df-iota 5219 df-riota 5877 df-sup 7050 df-inf 7051 | 
| This theorem is referenced by: infnlbti 7092 zssinfcl 10322 | 
| Copyright terms: Public domain | W3C validator |